Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)
\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)
\(=\frac{a}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac\left(bc+b+1\right)}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}=1\)
Đặt B = \(bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)
\(=bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2\left(bcyz+acxz+abxy\right)\) (1)
Từ \(ax+by+cz=0\Rightarrow\left(ax+by+cz\right)^2=0\)
=>\(a^2x^2+b^2y^2+c^2z^2+2\left(bcyz+acxz+abxy\right)=0\)
=>\(a^2x^2+b^2y^2+c^2z^2=-2\left(bcyz+acxz+abxy\right)\) (2)
Thay (2) vào (1) ta được:
\(B=ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)\)
\(=\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)
Vậy \(A=\frac{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}{ax^2+by^2+cz^2}=a+b+c\)
\(A=\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)
\(=x^3+ax^2+bx^2+abx+cx^2+acx+bcx+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
Theo bài ra ta có:
\(a+b+c=6\)
\(ab+bc+ca=-7\)
\(abc=-60\)
\(\Rightarrow A=x^3+6x^2-7x-60\)
Bạn nên viết đề cho rõ ràng để mọi người hiểu đề và hỗ trợ bạn tốt hơn. Viết đề díu dít vào nhau và không gõ công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) khiến bài của bạn có khả năng bị bỏ qua cao hơn nhé.
\(A=\left(x+a\right)\left(x+b\right)\left(x+c\right)\\ =\left(x^2+ax+bx+ab\right)\left(x+c\right)\\ =x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\\ =x^3+6x^2-7x-60\)
\(B=\left(x+y+z\right)^2=\left[\left(x+y\right)+z\right]^2\\ =\left(x+y\right)^2+2\left(x+y\right)z+z^2\\ =x^2+2xy+y^2+2xz+2yz+z^2\\ =x^2+y^2+z^2+2xy+2yz+2zx\)
Bạn ơi! Ở bài 1 dòng thứ ba tại sao nó lại như vậy:)