K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

1) \(x^2-6y^2=1\)

=> \(x^2-1=6y^2\)

=> \(y^2=\frac{x^2-1}{6}\)

Nhận thấy y^2 thuộc Ư của \(\dfrac{x^2-1}{6}\)

=> \(y^2\) là số chẵn.

Mà y là số nguyên tố.

=> y = 2.

Thay vào:

=> \(x^2-1=\dfrac{4}{6}=24\)

=> \(x^2=25\)

=> \(x=5\)

Vậy: x = 5; y = 2.

24 tháng 4 2017

Sửa đề: CMR: \(A=1.2.3...2012\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)⋮2012\)

Ta có:

\(A=1.2.3...2012\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)\)

là tích trong đó có thừa số là 2012

=> A \(⋮\) 2012

28 tháng 3 2018

viết cả cách làm nhé!

Bài 1:

a. https://olm.vn/hoi-dap/detail/100987610050.html

b. Giống nhau hoàn toàn => P=Q

Chỉ biết thế thôi

23 tháng 4 2017

kiem tra lai de

7 tháng 4 2017

c) Cho B = (1.2.3....2012) . ( 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\) ) Chứng minh B chia hết cho 2013

B = (1.2.3....2012) . (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ...+ \(\dfrac{1}{2012}\) )

=(1.2.3...671...2012) . (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\))

=(1.2.(3.671)...2012) . (1 + \(\dfrac{1}{2}\) +\(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\))

=(1.2.2013...2012) . (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\))

Vậy B chia hết cho 2013

Đúng đấy, bạn cứ chép vào đi

9 tháng 4 2017

sai rồi