K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

22 tháng 11 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} đây là biểu thức gì\)

18 tháng 6 2019

Trả lời

b)(1/3+12/67+13/41)-(79/67-28/41)

=1/3+12/67+13/41-79/67+28/41

=1/3+(12/67-79/67)+(13/41+28/41)

=1/3+(-67/67)+41/41

=1/3+(-1)+1

=1/3+0

=1/3.

18 tháng 6 2019

c)38/45-(8/45-17/51-3/11)

=38/45-8/45+17/51+3/11

=30/45+1/3+3/11

=2/3+1/3+3/11

=3/3+3/11

=1+3/11

=1 3/11.

13 tháng 4 2017

Câu 2/ Gọi ước chung lớn nhất của a,c là q thì ta có:

a = qa1; c = qc1 (a1, c1 nguyên tố cùng nhau).

Thay vào điều kiện ta được:

 qa1b = qc1d

\(\Leftrightarrow\)a1b = c1d

\(\Rightarrow\)  d\(⋮\)a1

\(\Rightarrow\)d = d1a1

Thế ngược lại ta được: b = d1c1

Từ đây ta có:

A = an + bn + cn + dn = (qa1)n + (qc1)n + (d1a1)n + (d1c1)n

= (a​1 n + c1 n)(q n + d1 n)

Vậy A là hợp số

13 tháng 4 2017

\(D=\frac{4}{1^2}+\frac{4}{3^2}+....+\frac{4}{2015^2}\)

\(D=4+2.\left(\frac{2}{3.3}+\frac{2}{5.5}+....+\frac{2}{2015.2015}\right)\)

\(D< 4+2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{2013.2015}\right)\)

\(D< 4+2.\left(1-\frac{1}{2015}\right)\)

\(D< 6\)

mink chỉ làm được vậy thôi bạn ạ, sorry

2 tháng 9 2015

A = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)

A = \(\left(-\frac{1.3}{2.2}\right)\left(-\frac{2.4}{3.3}\right)...\left(-\frac{2013.2015}{2014.2014}\right)\)

A = \(-\left[\frac{\left(1.2....2013\right)\left(3.4....2015\right)}{\left(2.3....2014\right)\left(2.3...2014\right)}\right]\)

A = \(-\left(\frac{2015}{2014.2}\right)\)

A = \(-\frac{2015}{4028}\)

2 tháng 9 2015

còn câu b thì sao z mấy bn?

15 tháng 8 2019

\(A=49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)

\(A=49\frac{8}{23}-5\frac{7}{32}+14\frac{8}{23}\)

\(A= \left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}\)

\(A=\left[\left(49-14\right)-\left(\frac{8}{23}-\frac{8}{23}\right)\right]-5\frac{7}{32}\)

\(A=\left[35-0\right]-5\frac{7}{32}\)

\(A=35-5\frac{7}{32}\)

\(A=\frac{953}{32}\)

\(B=71\frac{38}{45}-\left(43\frac{38}{45}-1\frac{17}{57}\right)\)

\(B=71\frac{38}{45}-\frac{36377}{855}\)

\(B=\frac{1670}{57}\)

\(C=\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right):\frac{4}{5}\)

\(C=\left[\left(19\frac{5}{8}-13\frac{1}{4}\right):\frac{7}{12}\right]:\frac{4}{5}\)

\(C=\left[\frac{51}{8}:\frac{7}{12}\right]:\frac{4}{5}\)

\(C=\frac{153}{14}:\frac{4}{5}\)

\(C=\frac{765}{56}\)

\(D=\left[\left(\frac{10}{15}-\frac{2}{3}\right):\frac{1}{7}\right]\cdot0,15-\frac{1}{4}\)

\(D=\left[0:\frac{1}{7}\right]\cdot\frac{3}{20}-\frac{1}{4}\)

\(D=0\cdot\frac{3}{20}-\frac{1}{4}\)

\(D=0-\frac{1}{4}\)

\(D=-\frac{1}{4}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot2\frac{1}{2}-\left[\left(\frac{1}{2}+\frac{1}{3}\right):\frac{53}{90}\right]:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\left[\frac{5}{6}:\frac{53}{90}\right]:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\frac{75}{53}:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{14}{9}-\frac{3}{2}\)

\(\)\(E=\frac{22}{45}\)

CHUC BAN HOC TOT >.<

27 tháng 3 2019

trong câu hỏi tương tự

15 tháng 2 2020

a) \(2\frac{3}{4}\cdot\left(-0,4\right)-1\frac{3}{5}\cdot2,75+1,2:\frac{4}{11}\)

\(=2\frac{3}{4}\cdot\left(-\frac{2}{5}\right)-1\frac{3}{5}\cdot\frac{11}{4}+\frac{6}{5}:\frac{4}{11}\)

\(=\frac{11}{4}\cdot\left(-\frac{2}{5}\right)-1\frac{3}{5}\cdot\frac{11}{4}+\frac{6}{5}\cdot\frac{11}{4}\)

\(=\frac{11}{4}\left(-\frac{2}{5}-1\frac{3}{5}+\frac{6}{5}\right)\)

\(=\frac{11}{4}\left(-\frac{2}{5}-\frac{8}{5}+\frac{6}{5}\right)\)

\(=\frac{11}{4}\cdot\left(-\frac{4}{5}\right)=\frac{11}{1}\cdot\left(-\frac{1}{5}\right)=-\frac{11}{5}\)

b) \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)....\left(\frac{1}{31}+1\right)\)

\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{31}+\frac{31}{31}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{32}{31}\)

\(=\frac{3\cdot4\cdot5\cdot...\cdot32}{2\cdot3\cdot4\cdot...\cdot31}=\frac{32}{2}=16\)

c) Đặt \(C=1+2+3+...+30\)

Số số hạng là : \(\left(30-1\right):1+1=30\)(số)

Tổng của dãy số là : \(\frac{\left(1+30\right)\cdot30}{2}=465\)

Do đó : \(\frac{930}{C}=\frac{930}{465}=2\)