Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
ta có \(\left(a-b\right)^2>=0\) => \(a^2+b^2>=2ab\)
tương tự ta có \(b^2+c^2>=2bc\)
\(c^2+a^2>=2ac\)
cộng từng vế của 3 BĐt cùng chiều ta có \(2\left(a^2+b^2+c^2\right)>=2\left(ab+bc+ca\right)\)
=> \(a^2+b^2+c^2>=ab+bc+ca\)
dấu = xảy ra <=> \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
<=> a=b=c
<=> tam giác ABC là tam giác đều(ĐPCM)
Từ giả thiết suy ra
(a-b)^2+(b-c)^2+(a-c)^2=0 (nhân bung cái này sẽ ra cái giả thiết ban đầu).
Từ đó suy ra: a=b, b=c và c=a. (Do tổng của 3 bình phương mà lại bằng 0 tức là các bình phương đó đều phải bằng 0). Suy ra tam giác đó đều
Cách của bạn phía trên sai. Bạn đang chứng minh chiều nghịch của bài toán
1. bổ sung thêm +ab
Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab = a2 - ab + b2 + ab = a2 + b2
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức ta có :
\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\)
=> a3 + b3 + ab ≥ 1/2 ( đpcm )
Dấu "=" xảy ra <=> a = b = 1/2
2. nhìn căng đét làm sau :>
3. Theo bđt tam giác ta có : \(\hept{\begin{cases}a-b< c\\b-c< a\\c-a< b\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-b\right)^2< c^2\\\left(b-c\right)^2< a^2\\\left(c-a\right)^2< b^2\end{cases}}\)
Cộng vế với vế các bđt trên và thu gọn ta có đpcm