K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

Bài 1: Dễ

Bài 2: a sai đề.

Đợi em tắm đã rùi làm nha :)

10 tháng 7 2017

Bài 1:

A' B' C' A B C H H'

Xét tam giác ABC và tam giác A'B'C' đều ta có:

\(\widehat{ABC}=\widehat{A'B'C'}=60^o\)(theo tính chất của tam giác đều)

\(\Rightarrow\widehat{HAB}=\widehat{H'A'B'}\)

Xét tam giác \(ABH\) và tam giác \(A'B'H'\) ta có:

\(\widehat{AHB}=\widehat{A'H'B'}\left(=90^o\right);AH=A'H'\left(gt\right);\widehat{HAB}=\widehat{H'A'B'}\left(cmt\right)\)

Do đó tam giác ABH= tam giác A'B'H'(g.c.g)

=> AB=A'B'=> AB=AC=CB=A'B'=A'C'=B'C'(theo tính chất của tam giác đều)

Xét tam giác ABC và tam giác A'B'C' ta có:

\(AB=A'B'\left(cmt\right);\widehat{ABC}=\widehat{A'B'C'}\left(=60^o\right);BC=B'C'\left(cmt\right)\)

Do đó tam giác ABC= tam giác A'B'C'(c.g.c)(đpcm)

Xong =))

Câu 1: 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

Do đo: ΔABE=ΔHBE

b: Ta có:BA=BH

EA=EH
Do đó:BE là đường trung trực của AH

c: Ta có: EA=EH

mà EH<EC

nên EA<EC

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc

a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)

Mặt khác dễ dàng chứng minh được EDFˆ=60o

Vì vậy tam giác DEF là tam giác đều

b)ΔEDK=ΔFDT(hai cạnh góc vuông)

nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D

c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o

AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)

AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)

Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều

d)Ta có AF=AC-FC=CM-FC=m-n.

5 tháng 3 2018

Bài 2 :

A B D C M K F

a) Xét \(\Delta ABM,\Delta ADM\) có :

\(AB=AD\left(gt\right)\)

\(AM:chung\)

\(BM=DM\) (M là trung điểm của BD)

=> \(\Delta ABM=\Delta ADM\left(c.c.c\right)\)

b) Từ \(\Delta ABM=\Delta ADM\) (cmt - câu a) suy ra :

\(\widehat{AMB}=\widehat{AMD}\) (2 góc tương ứng)

Mà : \(\widehat{AMB}+\widehat{AMD}=180^o\left(Kềbù\right)\)

=> \(\widehat{AMB}=\widehat{AMD}=\dfrac{180^o}{2}=90^o\)

=> \(AM\perp BD\rightarrowđpcm\)

c) Xét \(\Delta ABK,\Delta ADK\) có :

AB = AD (gt)

\(\widehat{BAK}=\widehat{DAK}\) (\(\Delta ABM=\Delta ADM\))

AK :Chung

=> \(\Delta ABK=\Delta ADK\left(c.g.c\right)\)

d) Ta có : \(\left\{{}\begin{matrix}\widehat{ABK}+\widehat{FBK}=180^{^O}\\\widehat{ADK}+\widehat{CDK}=180^{^O}\end{matrix}\right.\left(Kềbù\right)\)

Lại có : \(\widehat{ABK}=\widehat{ADK}\) (do \(\Delta ABK=\Delta ADK\left(c.g.c\right)\)

Nên : \(180^o-\widehat{ABK}=180^o-\widehat{ADK}\)

\(\Leftrightarrow\widehat{FBK}=\widehat{CDK}\)

Xét \(\Delta BFK,\Delta DCK\) có :

\(BF=CD\left(gt\right)\)

\(\widehat{FBK}=\widehat{CDK}\left(cmt\right)\)

\(BK=DK\) (\(\Delta ABK=\Delta ADK\left(c.g.c\right)\))

=> \(\Delta BFK=\Delta DCK\left(c.g.c\right)\)

=> FK = DK (2 cạnh tương ứng)

=> K là trung điểm của FD

=> F, D, K thẳng hàng.

Sửa đề: b: Cắt BD kéo dài tại I

a: Xét ΔDBC có

DM vừa là đường cao, vừa là trung tuyến

nên ΔDBC cân tại D

b: AH vuông góc với DM

DM vuông góc với BC

Do đó: AH//BC

=>góc DAI=góc DCB

=>góc CAH=góc DBC

c: Xét ΔDAI có góc DAI=góc DIA

nên ΔDAI cân tại D

=>DA=DI

=>AC=BI

Xét ΔABC và ΔICB có

AB=IC

BC chung

AC=IB

DO đó: ΔABC=ΔICB

19 tháng 11 2022

a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

Do đó: ΔAED=ΔAFD

=>DE=DF

góc FDE=360-90-90-120=60 độ

b: AE+EK=AK

AF+FI=AI

mà AE=AF; EK=FI

nên AK=AI

Xét ΔAKD và ΔAID có

AK=AI

góc KAD=góc IAD

AD chung

DO đó: ΔAKD=ΔAID

=>DK=DI

c: góc CAM=180-120=60 độ

góc ACM=góc CAD=60 độ

=>góc M=60 độ

Bài 1: 

Sửa đề: Cho ΔABC vuông tại A

a: Xét ΔHAC có

M là trung điểm của HA

N là trung điểm của HC

Do đó: MN là đường trung bình

=>MN//AC

hay MN\(\perp\)AB

Xét ΔANB có

AH là đường cao

NM là đường cao

AH cắt NM tại M

DO đó:M là trực tâm của ΔANB

b: Tacó: M là trực tâm của ΔANB

nên BM\(\perp\)AN

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có