K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

\(1)C=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{162}\)

\(3C=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{54}\)

\(3C-C=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{54}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{162}\right)\)

\(2C=1-\dfrac{1}{162}\)

\(2C=\dfrac{161}{162}\)

\(C=\dfrac{161}{162}.\dfrac{1}{2}\)

\(C=\dfrac{161}{324}\)

\(2)A=\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}+\dfrac{1}{512}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}\)

\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}\right)-\left(\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{32}+\dfrac{1}{128}+\dfrac{1}{512}\right)\)

\(A=1-\dfrac{1}{512}=\dfrac{511}{512}\)

 nêu rõ đề bài

tính hay so sánh

9 tháng 7 2019

tính hợp lí

Ta có:\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\)

Vậy đpcm

1+2+4+8+16+32+64+128+256+512+1024+2048

=1+(2+8)+(4+16)+(32+128)+(64+256)+(512+2048)+1024

=1+10+20+160+320+2560+1024

=4095

5 tháng 1 2017

 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 = 4095 

k nha      công chúa nụ cười    =_=   ^_^

11 tháng 6 2020

Đề bài: Tính

\(A=\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\frac{1}{512}+\frac{1}{2048}\)

\(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\)

\(2^2.A=2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\)

\(4A-A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\right)\)

\(3A=2-\frac{1}{2^{11}}\)

\(\Rightarrow A=\frac{2-\frac{1}{2^{11}}}{3}\)

Vậy \(A=\frac{2-\frac{1}{2^{11}}}{3}\).

11 tháng 6 2020

ta có

A= 1/2+ 1/8+1/32+1/128+1/512+1/2048

=> A= 1/2 +1/ 2^3 +1/2^5 +1/2^7+1/2^9+1/2^11

=> 2^2 A=2+1/2+1/2^3+1/2^5+1/2^7+1/2^9

=> 2^2A-A= (2+1/2+1/2^3+1/2^5+1/2^7+1/2^9)-(1/2+1/2^3+/2^5+1/2^7+1/2^9+1/2^11)

=> 3A= 2- 1/2^11

=>3A= 4095/2048

=> A= 1365/2048