K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Leftrightarrow\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}=\dfrac{x-1-2y+4+3z-9}{2-6+12}=\dfrac{-10-6}{-8}=\dfrac{-16}{-8}=2\)\(\Rightarrow\left\{{}\begin{matrix}x=2.2+1=5\\y=2.3+2=8\\z=2.4+3=11\end{matrix}\right.\)

12 tháng 11 2017

Theo đề bài ta có:

\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{b}{c}\\\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=k\)

ta có:

\(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=k^3=\dfrac{a}{d}\)

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)

Ta có đpcm

22 tháng 3 2023

Áp dụng t/c của DTSBN , ta có :

+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{x+2y+z}{a+2b+c+2\left(2a+b-c\right)+4a-4b+c}\\ =\dfrac{x+2y+z}{a+2b+c+4a+2b-2a-2c+4a-4b+c}\\ =\dfrac{x+2y+z}{\left(a+4a+4a\right)+\left(2b+2b-4b\right)+\left(c-2c+c\right)}\\ =\dfrac{x+2y+z}{9a}\left(1\right)\)

+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{2x+y-z}{2\left(a+2b+c\right)+2a+b-c-4a+4b+c}\\ =\dfrac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b+c}\\ =\dfrac{2x+y-z}{\left(2a+2a-4a\right)+\left(4b+b+4b\right)+\left(2c-c+c\right)}\\ =\dfrac{2x+y-z}{9b}\left(2\right)\)

+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{4x-4y+z}{4\left(a+2b+c\right)-4\left(2a+b-c\right)++4a-4b+c}\\ =\dfrac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}\\ =\dfrac{4x-4y+z}{\left(4a-8a+4a\right)+\left(8b-4b-4b\right)+\left(4c+4c+c\right)}\\ =\dfrac{4x-4y+z}{9c}\left(3\right)\)

Từ (1);(2) và (3) 

\(\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2a+y-z}{9b}=\dfrac{4x-4y+z}{9c}\\ \Rightarrow\dfrac{x+2y+z}{9a}\cdot9=\dfrac{2a+y-z}{9b}\cdot9=\dfrac{4x-4y+z}{9c}\cdot9\\ \Rightarrow\dfrac{x+2y+z}{a}=\dfrac{2a+y-z}{b}=\dfrac{4x-4y+z}{c}\\ \Rightarrow\dfrac{a}{a+2y+z}=\dfrac{b}{2a+y-z}=\dfrac{c}{4x-4y+z}\left(đpcm\right)\)

NV
22 tháng 3 2023

Đặt \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=k\left(a+2b+c\right)\\y=k\left(2a+b-c\right)\\z=k\left(4a-4b+c\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{a}{k\left(a+2b+c\right)+2k\left(2a+b-c\right)+k\left(4a-4b+c\right)}=\dfrac{a}{k.9a}=\dfrac{1}{9k}\)

Tượng tự:

\(\dfrac{b}{2x+y-z}=\dfrac{b}{9bk}=\dfrac{1}{9k}\) ; \(\dfrac{c}{4x-4y+z}=\dfrac{c}{9k.c}=\dfrac{1}{9k}\)

\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)

15 tháng 10 2017

Ta có:

\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)

\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)

Từ (1) và (2), suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)

Vậy \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)(đpcm)

~ Học tốt!~

23 tháng 12 2020

a) Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\)

\(\Leftrightarrow\dfrac{a}{8}=\dfrac{b}{12}\)(1)

Ta có: \(\dfrac{b}{4}=\dfrac{c}{5}\)

nên \(\dfrac{b}{12}=\dfrac{c}{15}\)(2)

Từ (1) và (2) suy ra \(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\)

mà a+b+c=2 

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{2}{35}\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{2}{35}\\\dfrac{b}{12}=\dfrac{2}{35}\\\dfrac{c}{15}=\dfrac{2}{35}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{16}{35}\\b=\dfrac{24}{35}\\c=\dfrac{30}{35}=\dfrac{6}{7}\end{matrix}\right.\)

Vậy: \(a=\dfrac{16}{35}\)\(b=\dfrac{24}{35}\)\(c=\dfrac{6}{7}\)

b) Ta có: 2a=3b=5c

nên \(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)

mà a+b-c=3

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b-c}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{3}{\dfrac{19}{30}}=\dfrac{90}{19}\)

Do đó: 

\(\left\{{}\begin{matrix}2a=\dfrac{90}{19}\\3b=\dfrac{90}{19}\\5c=\dfrac{90}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{45}{19}\\b=\dfrac{30}{19}\\c=\dfrac{18}{19}\end{matrix}\right.\)

Vậy: \(a=\dfrac{45}{19}\)\(b=\dfrac{30}{19}\)\(c=\dfrac{18}{19}\)

7 tháng 1 2021

b/ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\dfrac{a}{d}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

=> \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{c+d+b}\right)^3\) (2)Từ (1) và (2)=>đpcm

8 tháng 1 2021

Cảm ơn bn nha