K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

\(A=-1+7-7^2+7^3-...-7^{202}\)

\(7A=7\left(-1+7-7^2+7^3-...-7^{202}\right)\)

\(7A=-7+7^2-7^3+...+7^{202}-7^{2003}\)

\(7A+A=\left(-7+...+7^{202}-7^{203}\right)+\left(-1+7-...-7^{202}\right)\)

\(8A=-7^{203}-1\Rightarrow A=\dfrac{-7^{203}-1}{8}\)

20 tháng 4 2022

...

NV
23 tháng 4 2022

\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)

\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)

NV
13 tháng 1

a.

\(2^x=2^{3x-1}\Leftrightarrow x=3x-1\)

\(\Rightarrow x=\dfrac{1}{2}\)

b.

\(7^{x-5}=49\Leftrightarrow x-5=log_749=2\)

\(\Rightarrow x=7\)

c.

\(3^{5x-3}=1\Rightarrow5x-3=log_31=0\)

\(\Rightarrow x=\dfrac{3}{5}\)

d.

\(\left(\dfrac{1}{7}\right)^{5x}=7^{x+6}\Leftrightarrow7^{-5x}=7^{x+6}\)

\(\Leftrightarrow-5x=x+6\)

\(\Rightarrow x=-1\)

NV
21 tháng 7 2021

c.

\(\Leftrightarrow x^2+3-\left(3x+1\right)\sqrt{x^2+3}+2x^2+2x=0\)

Đặt \(\sqrt{x^2+3}=t>0\)

\(\Rightarrow t^2-\left(3x+1\right)t+2x^2+2x=0\)

\(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=\left(x-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1-x+1}{2}=x+1\\t=\dfrac{3x+1+x-1}{2}=2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3=x^2+2x+1\left(x\ge-1\right)\\x^2+3=4x^2\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

NV
21 tháng 7 2021

a.

Đề bài ko chính xác, pt này ko giải được

b.

ĐKXĐ: \(x\ge-\dfrac{7}{2}\)

\(2x+7-\left(2x+7\right)\sqrt{2x+7}+x^2+7x=0\)

Đặt \(\sqrt{2x+7}=t\ge0\)

\(\Rightarrow t^2-\left(2x+7\right)t+x^2+7x=0\)

\(\Delta=\left(2x+7\right)^2-4\left(x^2+7x\right)=49\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+7-7}{2}=x\\t=\dfrac{2x+7+7}{2}=x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+7}=x\left(x\ge0\right)\\\sqrt{2x+7}=x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-7=0\left(x\ge0\right)\\x^2+12x+42=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=1+2\sqrt{2}\)

\(cos^2\left(\dfrac{pi}{7}\right)+cos^2\left(\dfrac{2pi}{7}\right)+cos^2\left(\dfrac{3pi}{7}\right)\)

\(=1-2\cdot cos\left(\dfrac{pi}{7}\right)\cdot cos\left(\dfrac{2pi}{7}\right)\cdot cos\left(\dfrac{3pi}{7}\right)\)

\(=1-2\cdot\dfrac{1}{2}\left[cos\left(\dfrac{pi}{7}+\dfrac{3pi}{7}\right)+cos\left(\dfrac{3pi}{7}-\dfrac{pi}{7}\right)\right]\cdot cos\left(\dfrac{2pi}{7}\right)\)

\(=1-cos\left(\dfrac{2pi}{7}\right)\cdot cos\left(\dfrac{4pi}{7}\right)-cos\left(\dfrac{2pi}{7}\right)\cdot cos\left(\dfrac{2pi}{7}\right)\)

\(=1-cos^2\left(\dfrac{2pi}{7}\right)-cos\left(\dfrac{2pi}{7}\right)\cdot cos\left(\dfrac{4pi}{7}\right)\)

\(=sin^2\left(\dfrac{2pi}{7}\right)-cos\left(\dfrac{2pi}{7}\right)\cdot\left[2\cdot cos^2\left(\dfrac{2pi}{7}\right)-1\right]\)

\(=sin^2\left(\dfrac{2pi}{7}\right)-2\cdot cos^3\left(\dfrac{2pi}{7}\right)+cos\left(\dfrac{2pi}{7}\right)\)

17 tháng 8 2023

Bạn ơi, không tính được ra kết quả à bạn 

17 tháng 2 2017

Khác gì lớp 6 đâu đăng nhầm lớp hả:

\(S=\frac{1}{7^2}\left(1^2+2^2+3^2+...+10^2\right)=\frac{1}{7^2}.385=\frac{7.11.5}{7.7}=\frac{11.5}{7}\)

NV
9 tháng 4 2020

\(1^7+2^7+...+n^7=\frac{6p^4-4p^3+p^2}{3}\)

Trong đó \(p=1+2+...+n=\frac{n\left(n+1\right)}{2}\)

19 tháng 1 2021

\(lim\dfrac{4.3^n+7^n+1}{2.5^n+7^n}\)

\(=lim\dfrac{7^n\left(4.\left(\dfrac{3}{7}\right)^n+1+\dfrac{1}{7^n}\right)}{7^n\left(2.\left(\dfrac{5}{7}\right)^n+1\right)}\)

\(=1\)

NV
26 tháng 3 2022

1.

Do \(\lim\limits_{x\rightarrow2}\left(3x-5\right)=1>0\)

\(\lim\limits_{x\rightarrow2}\left(x-2\right)^2=0\)

\(\left(x-2\right)^2>0;\forall x\ne2\)

\(\Rightarrow\lim\limits_{x\rightarrow2}\dfrac{3x-5}{\left(x-2\right)^2}=+\infty\)

2.

\(\lim\limits_{x\rightarrow1^-}\left(2x-7\right)=-5< 0\)

\(\lim\limits_{x\rightarrow1^-}\left(x-1\right)=0\)

\(x-1< 0;\forall x< 1\)

\(\Rightarrow\lim\limits_{x\rightarrow1^-}\dfrac{2x-7}{x-1}=+\infty\)

3.

\(\lim\limits_{x\rightarrow1^+}\left(2x-7\right)=-5< 0\)

\(\lim\limits_{x\rightarrow1^+}\left(x-1\right)=0\)

\(x-1>0;\forall x>1\)

\(\Rightarrow\lim\limits_{x\rightarrow1^+}\dfrac{2x-7}{x-1}=-\infty\)

a: \(A=\dfrac{9^4}{3^2}=\dfrac{\left(3^2\right)^4}{3^2}=\dfrac{3^8}{3^2}=3^6\)=729

b: \(B=81\left(\dfrac{5}{3}\right)^4=81\cdot\dfrac{5^4}{3^4}=\dfrac{81}{3^4}\cdot5^4=5^4=625\)

c: \(C=\left(\dfrac{4}{7}\right)^{-4}\cdot\left(\dfrac{2}{7}\right)^3\)

\(=\left(\dfrac{7}{4}\right)^4\cdot\left(\dfrac{2}{7}\right)^3\)

\(=\dfrac{7^4}{4^4}\cdot\dfrac{2^3}{7^3}\)

\(=\dfrac{2^3}{4^4}\cdot7\)

\(=\dfrac{2^3}{2^8}\cdot7=\dfrac{7}{2^5}=\dfrac{7}{32}\)

d: \(D=7^{-6}\cdot\left(\dfrac{2}{3}\right)^0\left(\dfrac{7}{5}\right)^6\)

\(=7^{-6}\left(\dfrac{7}{5}\right)^6\)

\(=\dfrac{1}{7^6}\cdot\dfrac{7^6}{5^6}=\dfrac{1}{5^6}=\dfrac{1}{15625}\)

e: \(E=8^3:\left(\dfrac{2}{3}\right)^5\cdot\left(\dfrac{1}{3}\right)^2\)

\(=2^6:\dfrac{2^5}{3^5}\cdot\dfrac{1}{3^2}\)

\(=2^6\cdot\dfrac{3^5}{2^5}\cdot\dfrac{1}{3^2}\)

\(=\dfrac{2^6}{2^5}\cdot\dfrac{3^5}{3^2}=3^3\cdot2=54\)

f: \(F=\left(\dfrac{7}{9}\right)^{-2}\cdot\left(\dfrac{1}{\sqrt{3}}\right)^8\)

\(=\left(\dfrac{9}{7}\right)^2\cdot\left(\dfrac{1}{3}\right)^4\)

\(=\dfrac{9^2}{7^2}\cdot\dfrac{1}{3^4}=\dfrac{9^2}{3^4}\cdot\dfrac{1}{7^2}=\dfrac{81}{81}\cdot\dfrac{1}{49}=\dfrac{1}{49}\)

g: \(G=\left(-\dfrac{4}{5}\right)^{-2}\cdot\left(\dfrac{2}{5}\right)^2\cdot\left(\sqrt{2}\right)^3\)

\(=\left(-\dfrac{5}{4}\right)^2\cdot\left(\dfrac{2}{5}\right)^2\cdot2\sqrt{2}\)

\(=\dfrac{25}{16}\cdot\dfrac{4}{25}\cdot2\sqrt{2}=\dfrac{4}{16}\cdot2\sqrt{2}=\dfrac{8\sqrt{2}}{16}=\dfrac{\sqrt{2}}{2}\)