K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

\(2x(x-y)-4y(y-x)\\=2x(x-y)-4y[-(x-y)]\\=2x(x-y)+4y(x-y)\\=(2x+4y)(x-y)\\=2(x+2y)(x-y)\)

Ói , hoa mắt chóng mặt nhức đầu ,

9 tháng 8 2017

sao giống có chữa quá z

6 tháng 10 2019

giúp mik vs mik k cho

mai mik kt 1 tiết r

6 tháng 10 2019

a,

\(\left(x^2-2xy+y^2\right)\left(x-y\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\left[\left(x^2-2xy+y^2\right)\left(x-y\right)\right]-\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\)

\(=\left[\left(x-y\right)^2\left(x-y\right)\right]-\left(x-y\right)^3\)

\(=\left(x-y\right)^3-\left(x-y\right)^3\)

\(=0\)

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lời giải:
a.

$A=20x^3-10x^2+5x-(20x^3-10x^2-4x)$

$=9x=9.15=135$

b.

$B=(5x^2-20xy)-(4y^2-20xy)=5x^2-4y^2$

$=5(\frac{-1}{5})^2-4(\frac{-1}{2})^2=\frac{-4}{5}$

c.

$C=(6x^2y^2-6xy^3)-(8x^3-8x^2y^2)-(5x^2y^2-5xy^3)$

$=-8x^3+9x^2y^2-xy^3$

$=(-2x)^3+(3xy)^2-xy^3$

$=(-2.\frac{1}{2})^3+(3.\frac{1}{2}.2)^2-\frac{1}{2}.2^3$
$=(-1)^3+3^2-4=4$

26 tháng 7 2023

\(4.\left(3x+y\right)^2+\left(x+y\right)^2\) 

\(=3x^2+6xy+y^2+x^2-2xy+y^2\) 

\(=9x^2+6xy+y^2+x^2-2xy+y^2\)

\(=10x^2-4xy+2y^2\) 

\(7.\left(x-4\right)^2+\left(x+4y\right)\) 

\(=x^2-8x+16+x+4y\) 

\(=x^2-7x+16+4y\) 

\(10.\left(2x+7\right)^2+\left(-2x-3\right)^2\) 

\(=4x^2+28x+49+4x^2+12x+9\) 

\(=8x^2+40x+58\)

\(12.-\left(x+1\right)^2-\left(x-1\right)^2\) 

\(=-\left(x^2+2x+1\right)-\left(x^2-2x+1\right)\) 

\(=-x^2-2x-1+x^2+2x-1\)  

\(=4x\) 

\(5.-\left(x+5\right)^2-\left(x-3\right)^2\) 

\(=-\left(x^2+10x+25\right)-\left(x^2-6x+9\right)\) 

\(=-x^2-10-25+x^2+6x-9\) 

\(=-16x-16\) 

\(8.-\left(-2x+3\right)^2-\left(5x-3\right)^2\) 

\(=4x^2+12x+9-25x^2+30x-9\) 

\(=-21x^2+42x\)

\(11.-\left(2x-y\right)^2-\left(x+3y\right)^2\) 

\(=-4x^2+4xy-y^2-\left(x^2+6xy+9y^2\right)\) 

\(=-4x^2+4xy-y^2-x^2-6xy-9y^2\) 

\(=-5x^2-2xy-10y^2\)

4: =9x^2+6xy+y^2+x^2-2xy+y^2

=10x^2+4xy+2y^2

5: =-x^2-10x-25-x^2+6x-9

=-4x-34

7; \(=x^2-8xy+16y^2+x+4y\)

10: \(=4x^2+28x+49+4x^2+12x+9\)

=8x^2+40x+58

11: =-4x^2+4xy-y^2-x^2-6xy-9y^2

=-5x^2-2xy-10y^2

 

20 tháng 12 2020

a/ \(A=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\)

Thay x = 15 vào bt A ta có

A = 9 . 15 = 135

b/ \(B=5x^2-20xy-4y^2+2xy=5x^2-4y^2\)

Thay x = -1/5 ; y = - 1/2 vào bt B ta có

\(B=5.\dfrac{1}{25}-4.\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)

c/ \(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(=9x^2y^2-xy^3-8x^3\)

Thay x = 1/2 ; y = 2 vào bt C ta có

\(C=9.4.\dfrac{1}{4}-\dfrac{1}{2}.8-8.\dfrac{1}{8}=9-4-1=4\)

d/ \(D=6x^2+10x-3x-5+6x^2-3x+8x-2\)

\(=12x^2+12x-3\)

\(\left|x\right|=2\Rightarrow x=\pm2\)

Thay x = 2 vào bt D có

\(D=12.4+12.2-3=69\)

Thay x = - 2 vào bt D ta có

\(D=12.4-12.2-3=21\)

19 tháng 7 2023

\(1)A=2x\left(x-y\right)-y\left(y-2x\right)\)

\(=2x^2-2xy-y^2+2xy\)

\(=2x^2-y^2=2.\left(-\dfrac{2}{3}\right)^2-\left(-\dfrac{1}{3}\right)^2\)

\(=\dfrac{8}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)

\(2)B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(=5x^2-20xy-4y^2+20xy\)

\(=5x^2-4y^2=5.\left(-\dfrac{1}{5}\right)^2-4.\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{5}-1=-\dfrac{4}{5}\)

\(3)C=\text{x.(x^2-y^2)-x^2(x+y)+y(x^2-x)}\)

\(=x^3-xy^2-x^3-x^2y+x^2y-xy\)

\(=-xy\left(x+1\right)\)

19 tháng 7 2023

\(=\dfrac{1}{2}.100\left(100+1\right)=50.101=5050\)

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

1 tháng 9 2023

a) \(3x^2-3xy-5x+5y\)

\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)

\(=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5\right)\)

b) \(2x^3y-2xy^3-4xy^2-2xy\)

\(=2xy\left(x^2-y^2-2y-1\right)\)

\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)

\(=2xy\left[x^2-\left(y+1\right)^2\right]\)

\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)

c) \(x^2+1+2x-y^2\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x+1+y\right)\left(x+1-y\right)\)

d) \(x^2+4x-2xy-4y+y^2\)

\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)

\(=\left(x-y\right)^2+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y+4\right)\)

e) \(x^3-2x^2+x\)

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

f) \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x-y+1\right)\left(x+y+1\right)\)

a: =3x(x-y)-5(x-y)

=(x-y)(3x-5)

b: \(=2xy\left(x^2-y^2-2y-1\right)\)

\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)

\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)

d:

Sửa đề: x^2+4x-2xy-4y+y^2

=x^2-2xy+y^2+4x-4y

=(x-y)^2+4(x-y)

=(x-y)(x-y+4)

e: =x(x^2-2x+1)

=x(x-1)^2

f: =2(x^2+2x+1-y^2)

=2[(x+1)^2-y^2]

=2(x+1+y)(x+1-y)

23 tháng 8 2015

a)=x2-2x+1-y2-2y-1

=(x-1)2-(y+1)2

=(x-1+y+1)(x-1-y-1)=(x+y)(x-y-2)

25 tháng 3 2017

mình cũng vậy