Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ ( x-1) (2x+1) =0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-0,5\end{matrix}\right.\)
2/ x (2x-1) (3x+15) =0
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-5\end{matrix}\right.\)
3/ (2x-6) (3x+4).x=0
\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)
4/ (2x-10)(x2+1)=0
\(\Rightarrow\left[{}\begin{matrix}2x-10=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)
5/ (x2+3) (2x-1) =0
\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x^2=-3\left(loại\right)\\x=0,5\end{matrix}\right.\)
6/ (3x-1) (2x2 +1)=0
\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\2x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2=-0,5\left(loại\right)\end{matrix}\right.\)
1: Ta có: \(\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
2: Ta có: \(x\left(2x-1\right)\left(3x+15\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-5\end{matrix}\right.\)
3: Ta có: \(\left(2x-6\right)\left(3x+4\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)
1: Ta có: \(2x\left(x+3\right)-6\left(x-3\right)=0\)
\(\Leftrightarrow2x^2+6x-6x+18=0\)
\(\Leftrightarrow2x^2+18=0\left(loại\right)\)
2: Ta có: \(2x^2\left(2x+3\right)+\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\)
hay \(x=-\dfrac{3}{2}\)
3: Ta có: \(\left(x-2\right)\left(x+1\right)-4x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(1-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
4: Ta có: \(2x\left(x-5\right)-3x+15=0\)
\(\Leftrightarrow\left(x-5\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
5: Ta có: \(3x\left(x+4\right)-2x-8=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
6: Ta có: \(x^2\left(2x-6\right)+2x-6=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3
1.
\(x^2-5x+6=0\\ \Rightarrow x^2-2x-3x+6=0\\ \Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\\ \Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
2.
\(\left(x+4\right)^2-\left(3x-1\right)^2=0\\ \Rightarrow\left(x+4-3x+1\right)\left(x+4+3x-1\right)=0\\ \Rightarrow\left(-2x+5\right)\left(4x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}-2x+5=0\\4x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
3.
\(x^2-2x+24=0\\ \Rightarrow\left(x^2-2x+1\right)+23=0\\ \Rightarrow\left(x-1\right)^2+23=0\)
Vì (x-1)2≥0
23>0
\(\Rightarrow\left(x-1\right)^2+23>0\)
Vậy x vô nghiệm
4.
\(9x^2-4=0\\ \Rightarrow\left(3x-4\right)\left(3x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-4=0\\3x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
5.
\(x^2+2x-8=0\\ \Rightarrow\left(x^2+2x+1\right)-9=0\\ \Rightarrow\left(x+1\right)^2-3^2=0\\ \Rightarrow\left(x-2\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
5: =>4x^2-1/9=0
=>(2x-1/3)(2x+1/3)=0
=>x=1/6 hoặc x=-1/6
6: =>x-1=2
=>x=3
7:=>(2x-1)^3=-27
=>2x-1=-3
=>2x=-2
=>x=-1
8: =>1/8(x-1)^3=-125
=>(x-1)^3=-1000
=>x-1=-10
=>x=-9
3: =>(5x-5)^2-4=0
=>(5x-7)(5x-3)=0
=>x=3/5 hoặc x=7/5
4: =>(5x-1)^2=0
=>5x-1=0
=>x=1/5
1: =>(3x-1)(2x-1)=0
=>x=1/3 hoặc x=1/2
2: =>x^2(2x-3)-4(2x-3)=0
=>(2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>x=3/2;x=2;x=-2
`@` `\text {Answer}`
`\downarrow`
`1,`
\(2x\left(3x-1\right)+1-3x=0\)
`<=> 2x(3x - 1) - 3x + 1 = 0`
`<=> 2x(3x - 1) - (3x - 1) = 0`
`<=> (2x - 1)(3x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy, `S = {1/2; 1/3}`
`2,`
\(x^2\left(2x-3\right)+12-8x=0\)
`<=> x^2(2x - 3) - 8x + 12 =0`
`<=> x^2(2x - 3) - (8x - 12) = 0`
`<=> x^2(2x - 3) - 4(2x - 3) = 0`
`<=> (x^2 - 4)(2x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, `S = {+-2; 3/2}`
`3,`
\(25\left(x-1\right)^2-4=0\)
`<=> 25(x-1)(x-1) - 4 = 0`
`<=> 25(x^2 - 2x + 1) - 4 = 0`
`<=> 25x^2 - 50x + 25 - 4 = 0`
`<=> 25x^2 - 15x - 35x + 21 = 0`
`<=> (25x^2 - 15x) - (35x - 21) = 0`
`<=> 5x(5x - 3) - 7(5x - 3) = 0`
`<=> (5x - 7)(5x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy, `S = {7/5; 3/5}`
`4,`
\(25x^2-10x+1=0\)
`<=> 25x^2 - 5x - 5x + 1 = 0`
`<=> (25x^2 - 5x) - (5x - 1) = 0`
`<=> 5x(5x - 1) - (5x - 1) = 0`
`<=> (5x - 1)(5x-1)=0`
`<=> (5x-1)^2 = 0`
`<=> 5x - 1 = 0`
`<=> 5x = 1`
`<=> x = 1/5`
Vậy,` S = {1/5}.`
Lời giải:
1.
$M=(x^2+6x+9)+(x^2-9)-2(x^2-2x-8)$
$=x^2+6x+9+x^2-9-2x^2+4x+16=(x^2+x^2-2x^2)+(6x+4x)+(9-9+16)$
$=10x+16=5(2x+1)+11=5.0+11=11$
2.
$V=(9x^2+24x+16)-(x^2-16)-10x=9x^2+24x+16-x^2+16-10x$
$=(9x^2-x^2)+(24x-10x)+(16+16)=8x^2+14x+32$
$=8(\frac{-1}{10})^2+14.\frac{-1}{10}+32=\frac{767}{25}$
3.
$P=(x^2+2x+1)-(4x^2-4x+1)+3(x^2-4)$
$=x^2+2x+1-4x^2+4x-1+3x^2-12$
$=(x^2-4x^2+3x^2)+(2x+4x)+(1-1-12)$
$=6x-12=6.1-12=-6$
4.
$Q=(x^2-9)+(x^2-4x+4)-2x^2+8x$
$=x^2-9+x^2-4x+4-2x^2+8x$
$=(x^2+x^2-2x^2)+(-4x+8x)-9+4$
$=4x-5=4(-1)-5=-9$
1) Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
2) Ta có: \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3) Ta có: \(\left(2x-1\right)^2-\left(2x+5\right)^2=11\)
\(\Leftrightarrow4x^2-4x-1-4x^2-20x-25=11\)
\(\Leftrightarrow-24x=11+1+25=37\)
hay \(x=-\dfrac{37}{24}\)
5) Ta có: \(3x^2-5x-8=0\)
\(\Leftrightarrow3x^2+3x-8x-8=0\)
\(\Leftrightarrow3x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{8}{3}\end{matrix}\right.\)
8) Ta có: \(\left|x-5\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
10) Ta có: \(\left|2x+1\right|=\left|x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x-1\\2x+1=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=-1-1\\2x+x=1-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
1)(x2-4x+16)(x+4)-x(x+1)(x+2)+3x2=0
\(\Rightarrow\)(x3+64)-x(x2+2x+x+2)+3x2=0
\(\Rightarrow\)x3+64-x3-2x2-x2-2x+3x2=0
\(\Rightarrow\)-2x+64=0
\(\Rightarrow\)-2x=-64
\(\Rightarrow\)x=\(\dfrac{-64}{-2}\)
\(\Rightarrow x=32\)
2)(8x+2)(1-3x)+(6x-1)(4x-10)=-50
\(\Rightarrow\)8x-24x2+2-6x+24x2-60x-4x+10=50
\(\Rightarrow\)-62x+12=50
\(\Rightarrow\)-62x=50-12
\(\Rightarrow\)-62x=38
\(\Rightarrow\)x=\(-\dfrac{38}{62}=-\dfrac{19}{31}\)
1) Ta có: \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
Giúp mik vs ạ! Cần gấp
1: \(\Leftrightarrow\left(2x^2-3x-4-x^2+x\right)\left(2x^2-3x-4+x^2-x\right)=0\)
\(\Leftrightarrow\left(x^2-2x-4\right)\left(3x^2-4x-4\right)=0\)
\(\Leftrightarrow\left[\left(x-1\right)^2-5\right]\left(x-2\right)\left(3x+2\right)=0\)
hay \(x\in\left\{\sqrt{5}+1;-\sqrt{5}+1;2;-\dfrac{2}{3}\right\}\)
2: \(\Leftrightarrow\left(3x^2+2x+4-x^2+4\right)\left(3x^2+2x+4+x^2-4\right)=0\)
\(\Leftrightarrow\left(2x^2+2x+8\right)\left(4x^2+2x\right)=0\)
hay \(x\in\left\{0;-\dfrac{1}{2}\right\}\)