Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 3 + 5 + ... + 2x - 1 = 1225
Số số hạng của tổng 1 + 3 + 5 + ... + 2x - 1 là:
(2x - 1 - 1) : 2 + 1 = (2x - 2) : 2 + 1 = x - 1 + 1 = x
=> x.(2x - 1 + 1) : 2 = 1225
=> x.2x:2 = 1225
=> x.x = 1225 = 35.35
=> x = 35
a)\(\frac{-3}{5}+\frac{1}{4}+\frac{-3}{10}\)
\(=\frac{-12}{20}+\frac{5}{20}+\frac{-6}{20}\)
\(=\frac{-13}{20}\)
b)\(\frac{1}{5}+\frac{-9}{10}+\frac{-7}{25}=\frac{10}{50}+\frac{-45}{50}+\frac{-14}{50}=\frac{-49}{50}\)
c)\(\frac{1}{5}+\frac{-1}{6}+\frac{1}{7}+\frac{-1}{8}+\frac{1}{9}+\frac{1}{8}+\frac{-1}{7}+\frac{1}{6}+\frac{-1}{5}\)
=\(\left(\frac{1}{5}+\frac{-1}{5}\right)+\left(\frac{-1}{6}+\frac{1}{6}\right)+\left(\frac{1}{7}+\frac{-1}{7}\right)+\left(\frac{1}{8}+\frac{-1}{8}\right)+\frac{1}{9}\)
=\(0+0+0+0+\frac{1}{9}\)
=\(\frac{1}{9}\)
a (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15)
= ( 5/30 + 3/30 + 2/30) : (5/30 + 3/30 - 2/30)
= 1/3 : 1/6 = 1/3 x 6/1 = 6/3 = 2
b (1/2 - 1/3 + 1/4 - 1/5) : (1/4 - 1/5)
= (1/2 - 1/3 + 1/4 - 1/5) : (1/4 - 1/5)
= 1/2 - 1/3 = 1/6
A = ( 6 : 3/5 - 7/6 * 6/7 ) : ( 21/5 * 10/11 + 57/11 )
A = ( 10 - 1 ) : ( 42/11 + 57/11)
A = 9 : 9
A = 1
B = 59 /10 : 3/2 - ( 7/3 * 9/2 - 2 * 7/3 ) : 7/4
B = 59/15 - ( 21/2 - 14/3 ) : 7/4
B = 59/15 - 35/6 : 7/4
B = 59/15 - 10/3
B = 3/5
A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + .....+ \(\dfrac{1}{4950}\)
A = \(\dfrac{2}{2}\) \(\times\) ( 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\)+.......+ \(\dfrac{1}{4950}\))
A = 2 \(\times\) ( \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)+......+ \(\dfrac{1}{9900}\))
A = 2 \(\times\) ( \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+....+ \(\dfrac{1}{99.100}\))
A = 2 \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +....+ \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\))
A = 2 \(\times\) ( 1 - \(\dfrac{1}{100}\))
A = 2 \(\times\) \(\dfrac{99}{100}\)
A = \(\dfrac{99}{50}\)