Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(S=1-\frac{1}{2012}\)
\(S=\frac{2011}{2012}\)
Chúc bạn học tốt nha !!!
=1-1/2+1/2-1/3+1/3-1/4+...+1/2011-1/2012
= 1-1/2012
= 2011/2012
1.50+2.49+3.48+...+49.2+50.1=
= (1.50+2.50+3.50+...+50.1)-(1.2+2.3+3.4+...+49.50)
= (2500+50).50:2-41650
= 63750-41650=22100
2,
A = 1.2 + 2.3 + 3.4 + ... + 2011.2012
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2011.2012.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2011.2012.(2013 - 2010)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2011.2012.2013 - 2010.2011.2012
3A = 2011.2012.2013
A = 2011.2012.2013 : 3
A = 2714954572
\(=2012.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\right)\)
\(=2012.\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{2012-2011}{2011.2012}\right)\)
\(=2012.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\right)\)
\(=2012.\left(1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{2011}+\frac{1}{2011}\right)-\frac{1}{2012}\right)\)
\(=2012.\left(1-\frac{1}{2012}\right)=\frac{2012.2011}{2012}=2011\)
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 2011.2012.3
=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 2011.2012.( 2013 - 2010 )
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + .... + 2011.2012.2013 - 2010.2011.2012
=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 2010.2011.2012 - 2010.2011.2012 ) + 2011.2012.2013
=> 3S = 2011.2012.2013
=> S = ( 2011.2012.2013 ) : 3
3S=1.2.3+2.3.(4-1)+...............+2011.2012.(2013-2010)
3S=1.2.3+2.3.4-1.2.3+...............+2011.2012.2013-2010.2011.2012
3S=2011.2012.2013
S=2011.2012.2013:3
S=2714954572
a)
`1/1-1/2`
`=2/2-1/2`
`=1/2`
b)
`1/(1*2)+1/(2*3)`
`=1/1-1/2+1/2-1/3`
`=1/1-1/3`
`=3/3-1/3`
`=2/3`
c)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
d)
\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?
\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)
S = 1/2 - 1/3 + 1/3 -1/4 + ......... +1/2011 -1/2012
S= 1/2 - 1/2012 = 1005/2012
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{2012}\)
\(S=\frac{1}{2}+0+0+0+...-\frac{1}{2012}\)
\(S=\frac{1}{2}-\frac{1}{2012}\)
\(S=\frac{1005}{2012}\)
\(A=\frac{2012}{1}\cdot\frac{1005}{2012}\)
\(A=1005\)