Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,8\right)^5}{\left(0,4\right)^5}\times\frac{1}{0,4}=\left(\frac{0,8}{0,4}\right)^5\times\frac{5}{2}=2^5\times\frac{5}{2}=2^4\times5=16\times5=80\)
bạn ơi , tại sao \(\frac{0,8^5}{0,4^6}\)bằng \(\frac{0,8^5}{0,4^5}\)vậy ?
\(\dfrac{0,4-\dfrac{2}{9}+\dfrac{2}{11}}{1,4-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-0,25+\dfrac{1}{5}}{1\dfrac{1}{6}-0,875+0,7}\\ =\dfrac{2\left(0,2-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\left(0,2-\dfrac{1}{9}+\dfrac{1}{11}\right)}-\dfrac{2\left(\dfrac{1}{6}-0,125+0,1\right)}{7\left(\dfrac{1}{6}-0,125+0,1\right)}\\ =\dfrac{2}{7}-\dfrac{2}{7}\\ =0\)
Bài 1:Thực hiện phép tính:
a,\(\left[\left(-\dfrac{2}{3}\right)^{-3}.\left(\dfrac{3}{2}\right)^{-2}\right]:\left(-\dfrac{4}{3}\right)^{-3}\)
\(=\left(-\dfrac{27}{8}.\dfrac{4}{9}\right):-\dfrac{27}{64}\)
\(=\dfrac{32}{9}\)
b,\(0,\left(6\right)+0,8\left(3\right)-0,75\)
\(=\dfrac{2}{3}+\dfrac{5}{6}-\dfrac{3}{4}\)
\(=\dfrac{3}{4}\)
\(\)
A=ghi laị biểu thức
A=(0,8*7+0,8*0,8)*(1,25*7-1,25*4/5)+31,64
A=[0,8*(7+0,8)]*[1,25*(7-4/5)]+31,64
A=(0,8*7,8)*(1,25*6,2)+31,+31,64
A=6,24*7,75+31,64
A=48,36+31,64
A=80
Gắn hệ trục tọa độ với gốc tọa độ trùng với trung điểm của đoạn thẳng ứng với mặt cắt ngang nhỏ nhất của cột trụ.
Khi đó ta có phương trình của (H) là \(\frac{{{x^2}}}{{0,16}} - \frac{{{y^2}}}{{16}} = 1\)
Độ rộng của trụ ứng với độ cao 5m ứng với điểm trên (H) có tung độ bằng 2
Suy ra \(\frac{{{x^2}}}{{0,16}} - \frac{{{2^2}}}{{16}} = 1 \Rightarrow x \approx 0,45\)
Vậy độ rộng của cột trụ tại điểm có chiều cao 5m xấp xỉ bằng \(2.0,45 = 0,9\left( m \right)\).
a,\(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-14x+6y=-10\\15x+6y=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
\(\Leftrightarrow2x-y=3\)
b,\(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x-y=3\end{matrix}\right.\Leftrightarrow2x-y=3\)
Vậy hệ phương trình có vô số nghiệm (x;y)= (a;2a-3), a tùy ý
c, \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,6x-0,4y=0,8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=15\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=20,5\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{3}{5}x-\dfrac{1}{2}y=\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{11}{6}y=\dfrac{8}{5}\\\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{14}{11}\\y=-\dfrac{48}{55}\end{matrix}\right.\)
Độ dài cạnh góc vuông lớn hơn là x=5/4*6=7,5
Độ dài cạnh huyền là: \(\sqrt{6^2+7.5^2}=\dfrac{3}{2}\sqrt{41}\)
AB=( 3;-2)
AC=( -6-3t;8+2t-4)
để A, B, C thẳng hàng<=> \(\dfrac{AB}{AC}=\dfrac{-1}{2+t}=\dfrac{-1}{2+t}\)
từ đó chứng minh được A, B, C thẳng hàng
(0,8)^5/(0,4)^6=80