K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

dài quá

10 tháng 12 2022

a: Vì (d1)//(d) nên (d1): y=x+b

Thay x=0 và y=0 vào (d1), ta được:

b+0=0

=>b=0

b: Thay x=1 và y=4vào y=ax+6, ta được:

a+6=4

=>a=-2

17 tháng 4 2021

a, Tam giác ABC có trọng tâm \(G=\left(3;\dfrac{1}{3}\right)\)

Phương trình trung tuyến AM:

\(\dfrac{x-5}{3-5}=\dfrac{y+1}{\dfrac{1}{3}+1}\Leftrightarrow2x+3y-7=0\)

b, Phương trình đường thẳng BC là: \(x-2y=0\)

Phương trình đường cao AH vuông góc với BC nên có phương trình: \(2x+y+m=0\left(m\in R\right)\)

Mà \(A=\left(5;-1\right)\in AH\Rightarrow2.5-1+m=0\Leftrightarrow m=-9\)

\(\Rightarrow AH:2x+y-9=0\)

20 tháng 12 2021

em ko biết

AH
Akai Haruma
Giáo viên
31 tháng 8 2023

Lời giải:

Vì $\frac{AB}{AC}=\frac{3}{4}$ nên đặt $AB=3a; AC=4a$ $(a>0$)

Áp dụng hệ thức lượng trong tam giác vuông ta có:

$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}$

$\Rightarrow \frac{1}{(3a)^2}+\frac{1}{(4a)^2}=\frac{1}{16^2}$

$\Rightarrow \frac{25}{144a^2}=\frac{1}{16^2}$

$\Rightarrow a=\frac{20}{3}$

Áp dụng định lý pitago:

$HC=\sqrt{AC^2-AH^2}=\sqrt{(4a)^2-16^2}=\sqrt{(\frac{80}{3})^2-16^2}=\frac{64}{3}$ (cm)

AH
Akai Haruma
Giáo viên
31 tháng 8 2023

Hình vẽ:

23 tháng 7 2019

a) Xét \(\Delta\)APH và \(\Delta\)AQH có:

AH chung

APH=AQH=90

AHP=AHQ(AH là tia phân giác BAC)

Vậy \(\Delta\)APH = \(\Delta\)AQH(chgn)

24 tháng 6 2019

Câu 1: Diện tích tam giác là: \(\frac{h_A.a}{2}=\frac{3.6}{2}=9\)(đvdt)

Câu 2: Diện tích tam giác là: \(\frac{1}{2}ab.\sin C=\frac{1}{2}.4.5.\sin60^o=5\sqrt{3}\)(đvdt)

Câu 2: Ta có: \(\hept{\begin{cases}c^2=a^2+b^2-2ab.\cos C\\a^2+b^2>c^2\end{cases}\Rightarrow c^2>c^2-2ab.\cos C\Leftrightarrow2ab.\cos C>0}\)
\(\Rightarrow\cos C>0\Rightarrow C< 90^o\)
Vậy C là góc nhọn

NV
6 tháng 9 2021

Gọi vận tốc của các con kiến trên 3 cạnh lần lượt là \(v_{AB};v_{BC};v_{AC}\)

Đặt \(\dfrac{v_{AB}}{AB}=\dfrac{v_{BC}}{BC}=\dfrac{v_{AC}}{AC}=k\Rightarrow\left\{{}\begin{matrix}v_{AB}=k.AB\\v_{BC}=k.BC\\v_{AC}=k.AC\end{matrix}\right.\)

Tại 1 thời điểm t bất kì, giả sử con kiến trên cạnh AB đi tới điểm M, con kiến trên cạnh BC đi tới điểm N, con kiến trên cạnh CA đi tới điểm P

\(\Rightarrow\left\{{}\begin{matrix}AM=t.v_{AB}=t.k.AB\\BN=t.v_{BC}=t.k.BC\\CP=t.v_{CA}=t.k.CA\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=t.k.\overrightarrow{AB}\\\overrightarrow{BN}=t.k.\overrightarrow{BC}\\\overrightarrow{CP}=t.k.\overrightarrow{CA}\end{matrix}\right.\)  (1)

Gọi G là trọng tâm tam giác ABC

Từ (1) ta có:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=tk\left(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\right)=tk.\overrightarrow{0}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{AG}+\overrightarrow{GM}+\overrightarrow{BG}+\overrightarrow{GN}+\overrightarrow{CG}+\overrightarrow{GP}=\overrightarrow{0}\)

\(\Rightarrow\left(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}\right)+\overrightarrow{GM}+\overrightarrow{GN}+\overrightarrow{GP}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{0}+\overrightarrow{GM}+\overrightarrow{GN}+\overrightarrow{GP}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{GM}+\overrightarrow{GN}+\overrightarrow{GP}=\overrightarrow{0}\)

\(\Rightarrow G\) là trọng tâm tam giác MNP

\(\Rightarrow\) Tại mọi thời điểm thì tam giác tạo bởi 3 con kiến luôn có trọng tâm không đổi, là điểm trùng với trọng tâm của tam giác ABC

NV
6 tháng 9 2021

Đề bài sai nhé em, bài toán chỉ đúng trong trường hợp duy nhất, đó là  khi vận tốc của các con kiến thỏa mãn \(\dfrac{v_{AB}}{AB}=\dfrac{v_{BC}}{BC}=\dfrac{v_{CA}}{CA}\) (nghĩa là vận tốc con kiến trên cạnh nào thì có độ lớn tỉ lệ với độ dài cạnh ấy). Chuyển động đều là chưa đủ.