K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11

Đk: \(x\ge0\)

Đặt \(t=\sqrt{x}\Rightarrow t\ge0\)

\(\Rightarrow t^2-3t+2< 0\) (1)

\(t\) \(-\infty\) 1 2 +\(\infty\)
\(t^2-3t+2\) - + + -

\(\Rightarrow\left(1\right)\Leftrightarrow\left[{}\begin{matrix}t< 1\\t>2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\sqrt{x}< 1\\\sqrt{x}>2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>4\end{matrix}\right.\)

Kết hợp đk \(x\ge0\Rightarrow BPT\Leftrightarrow\left[{}\begin{matrix}0\le x< 1\\x>4\end{matrix}\right.\) 

 

 

=>2x-3căn x+2căn x-3>0

=>(2căn x-3)(căn x+1)>0

=>2căn x-3>0

=>x>9/4

30 tháng 10 2023

\(\Leftrightarrow x^2-4x+3>0\left(x\ne\pm5\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>3\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:
ĐK: $25-x^2>0\Leftrightarrow -5< x< 5$
$\frac{x^2-4x+3}{\sqrt{25-x^2}}>0$

$\Leftrightarrow x^2-4x+3>0$ (do $\sqrt{25-x^2}>0$)

$\Leftrightarrow (x-1)(x-3)>0$

$\Leftrightarrow x>3$ hoặc $x<1$

Kết hợp với đkxđ suy ra $3< x< 5$ hoặc $-5< x< 1$

21 tháng 1 2022

b) (0,5 - x)2 - 3 = 0 ⇔ 0,52 + x2 - 2.0,5x - 3 = 0

                               ⇔ x2 + 0,25 - x - 3 = 0

                               ⇔ x- x - 2,75 = 0

                               ⇔ ????

c: \(\Leftrightarrow\left(2x-3\sqrt{2}\right)\left(2x+\sqrt{2}\right)=0\)

hay \(x\in\left\{\dfrac{3\sqrt{2}}{2};-\dfrac{\sqrt{2}}{2}\right\}\)

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

NV
28 tháng 2 2021

ĐKXĐ: \(x\le2\)

Xét trên miền xác định:

\(\Leftrightarrow\dfrac{2x^3+3x}{7-2x}-1+1-\sqrt{2-x}>0\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(2x^2+2x+7\right)}{7-2x}+\dfrac{x-1}{1+\sqrt{2-x}}>0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{2x^2+2x+7}{7-2x}+\dfrac{1}{1+\sqrt{2-x}}\right)>0\)

\(\Leftrightarrow1< x\le2\)

a: ĐKXĐ: x>=3

Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)

=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)

=>\(\dfrac{3}{2}\sqrt{x-3}=3\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7(nhận)

b: ĐKXĐ: x>=0

\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)

=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)

=>\(7\sqrt{x}-5< =0\)

=>\(\sqrt{x}< =\dfrac{5}{7}\)

=>0<=x<=25/49

c: ĐKXĐ: x>=5

\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)

=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)

=>\(\dfrac{3}{2}\sqrt{x-5}=3\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

11 tháng 1 2022
Not biếtmdnhdhd
11 tháng 1 2022

Hummmm

NV
21 tháng 8 2021

ĐKXĐ: \(x\ge0\)

\(\dfrac{x}{\sqrt{x}-1}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\\sqrt{x}-1>0\end{matrix}\right.\)

\(\Leftrightarrow x>1\)

2 tháng 12 2017

ĐK : \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)

Đặt \(\sqrt{\frac{x+1}{x}}=t>0\)

\(bpt\Leftrightarrow\frac{1}{t^2}-2t>3\Leftrightarrow2t^3+3t^2-1< 0\Leftrightarrow\left(2t-1\right)\left(t+1\right)^2< 0\Leftrightarrow2t-1< 0\)(do \(\left(t+1\right)^2>0\))

       \(\Leftrightarrow t< \frac{1}{2}hay\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Rightarrow\frac{x+1}{x}< \frac{1}{4}\)

Với x >0, ta có: \(\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow4\left(x+1\right)< 1\Leftrightarrow x< -\frac{3}{4}\left(trái.với.gt:x>0\right)\)

Với x<-1 ta có: \(\frac{x+1}{x}< \frac{1}{4}\Rightarrow4\left(x+1\right)>x\Rightarrow x>-\frac{3}{4}\Rightarrow-\frac{3}{4}< x< -1\)

Vậy nghiệm của hệ phương trình là: \(-\frac{3}{4}< x< -1\)