Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-67\right)+125+\left(-33\right)+75\)
\(=\left[\left(-67\right)+\left(-33\right)\right]+\left(125+75\right)\)
\(=100+200=300\)
_______
\(86.\left(-108\right)+86.9-86\)
\(=86.\left[\left(-108\right)+9-1\right]\)
\(=86.\left(-100\right)=-8600\)
_______
\(23.\left(-16\right)-23.84+300\)
\(=23.\left[\left(-16\right)-84\right]+300\)
\(=23.\left(-100\right)+300\)
\(=-2300+300\)
\(=-2000\)
______
\(235-5\left[\left(5^3-3^3\right):14\right]\)
\(=235-5\left[\left(125-27\right):14\right]\)
\(=235-5\left[98:14\right]\)
\(=235-5.7\)
\(=235-35\)
\(=200\)
_______
\(95-\left(129-74\right):5+2022^0\)
\(=95-55:5+1\)
\(=95-11+1\)
\(=84+1=85\)
\(#NqHahh\)
A=2+22+23+...+299+2100A=2+22+23+...+299+2100
⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101
⇒A=2101−2⇒A=2101−2
B=3+32+33+...+399+3100B=3+32+33+...+399+3100
⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101
⇒2B=3101−3⇒2B=3101−3
⇒B=3101−32
A= \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{35}+\frac{1}{99}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.6}+...+\frac{2}{9.11}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)
\(2A=1-\frac{1}{11}=\frac{10}{11}\)
\(A=\frac{10}{11}:2=\frac{5}{11}\)
\(D=\frac{3^2}{1.4}+\frac{3^2}{4.7}+...+\frac{3^2}{13.16}\)
\(D=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{13.16}\right)\)
\(D=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{16}\right)\)
\(D=3.\left(1-\frac{1}{16}\right)=3.\frac{15}{16}=2\frac{13}{16}\)
Bài 2:
a) \(\left(3x+2\right)^3=-64\)
\(\Leftrightarrow\left(3x+2\right)^3=\left(-4\right)^3\)
\(\Leftrightarrow3x+2=\left(-4\right)\)
\(\Leftrightarrow3x=-4-2\)
\(\Leftrightarrow3x=-6\)
\(\Leftrightarrow x=-2\)
b) \(2x-3=-33\)
\(\Leftrightarrow2x=-33+3\)
\(\Leftrightarrow2x=-30\)
\(\Leftrightarrow x=-15\)
1.
a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(2A=2+2^2+2^3+....+2^{2008}\)
b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)
\(=2^{2008}-1\) (bạn xem lại đề)
2.
\(A=1+3+3^1+3^2+...+3^7\)
a. \(2A=2+2.3+2.3^2+...+2.3^7\)
b.\(3A=3+3^2+3^3+...+3^8\)
\(2A=3^8-1\)
\(=>A=\dfrac{2^8-1}{2}\)
3
.\(B=1+3+3^2+..+3^{2006}\)
a. \(3B=3+3^2+3^3+...+3^{2007}\)
b. \(3B-B=2^{2007}-1\)
\(B=\dfrac{2^{2007}-1}{2}\)
4.
Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)
a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b.\(4C-C=4^7-1\)
\(C=\dfrac{4^7-1}{3}\)
5.
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(S=2^{2018}-1\)
4:
a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6
=>4*C=4+4^2+...+4^7
b: 4*C=4+4^2+...+4^7
C=1+4+...+4^6
=>3C=4^7-1
=>\(C=\dfrac{4^7-1}{3}\)
5:
2S=2+2^2+2^3+...+2^2018
=>2S-S=2^2018-1
=>S=2^2018-1
1. 11(x-9)=77
x-9=7
x=16
2. 4(x-3)=48
x-3=12
x=15
3.3(x-8)=81
(x-8)=27
x=35
0.2.1.23.3.3.33.3.3.3.3.3.3.3.3.3.3=0