Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
\(S=\left\{1,\dfrac{4}{11}\right\}\)
Đặt C(x)=0
\(\Leftrightarrow11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\11x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
Vậy: Nghiệm của đa thức \(C\left(x\right)=11x^2-15x+4\) là 1 và \(\dfrac{4}{11}\)
Ta có: x+y+1=0
nên x+y=-1
Ta có: \(N=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(=\left(x+y\right)\left(x^2-y^2\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\left(x+y+1\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\cdot0+2\cdot\left(-1\right)+3\)
=-2+3=1
Đáp án:
P=\(\frac{2}{3}\)
Giải thích các bước giải:
x:y:z=5:4:3
⇒ x5x5 =y4y4 ⇒y= 4x54x5
⇒ x5x5 =z3z3 ⇒z= 3x53x5
Thay vào biểu thức ta được:
P= x+2y−3zx−2y+3zx+2y−3zx−2y+3z= x+2.4x5−33x5x−2.4x5+33x5x+2.4x5−33x5x−2.4x5+33x5 =4x56x54x56x5 =2323
Vậy P=\(\frac{2}{3}\)
# Chúc bạn học tốt!
Vì x,y,z tỉ lệ với các số 5,4,3 nên ta có : \(x:y:z=5:4:3\) hoặc \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Ta lại có : \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}\)
Đặt \(\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}=k\Rightarrow\hept{\begin{cases}x=5k\\2y=8k\\3z=9k\end{cases}}\)
\(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{4}{6}=\frac{2}{3}\)
Vậy \(P=\frac{2}{3}\)
Bài 2:
a: Xét ΔMNQ và ΔPQN có
\(\widehat{MNQ}=\widehat{PQN}\)(MN//PQ)
NQ chung
\(\widehat{MQN}=\widehat{PNQ}\)(MQ//NP)
Do đó: ΔMNQ=ΔPQN
b:
ΔMNQ=ΔPQN
=>MQ=PN; MN=PQ
Xét ΔOMN và ΔOPQ có
\(\widehat{OMN}=\widehat{OPQ}\)(MN//PQ)
MN=PQ
\(\widehat{ONM}=\widehat{OQP}\)(MN//PQ)
Do đó: ΔOMN=ΔOPQ
=>OM=OP
=>O là trung điểm của MP
c: ΔOMN=ΔOPQ
=>ON=OQ
Xét ΔOAN và ΔOBQ có
\(\widehat{ONA}=\widehat{OQB}\)(NA//BQ)
ON=OQ
\(\widehat{AON}=\widehat{BOQ}\)(hai góc đối đỉnh)
Do đó: ΔOAN=ΔOBQ
=>AN=BQ
=>\(BQ=\dfrac{1}{2}MQ\)
=>B là trung điểm của MQ
Xét ΔMQN có
NB,MO là các đường trung tuyếm
NB cắt MO tại G
Do đó: G là trọng tâm của ΔMQN
=>\(MG=\dfrac{2}{3}MO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot MP=\dfrac{1}{3}MP\)
=>MP=3MG
Bài 1:
a: Xét ΔOPQ và ΔOMN có
OP=OM
\(\widehat{POQ}=\widehat{MON}\)(hai góc đối đỉnh)
OQ=ON
Do đó: ΔOPQ=ΔOMN
b: ΔOPQ=ΔOMN
=>\(\widehat{OPQ}=\widehat{OMN}\)
=>PQ//MN
Xét ΔONP và ΔOQM có
ON=OQ
\(\widehat{NOP}=\widehat{QOM}\)(hai góc đối đỉnh)
OP=OM
Do đó: ΔONP=ΔOQM
=>NP=QM
c: ΔOMN=ΔOPQ
=>MN=PQ
mà \(NF=\dfrac{NM}{2};QE=\dfrac{QP}{2}\)
nên NF=QE
Xét ΔFNO và ΔEQO có
FN=EQ
\(\widehat{FNO}=\widehat{EQO}\)
NO=QO
Do đó: ΔFNO=ΔEQO
=>\(\widehat{FON}=\widehat{EOQ}\)
=>\(\widehat{FON}+\widehat{FOE}=180^0\)
=>N,O,E thẳng hàng