cho A= 2 + 2^2 + 2^3 + .... + 2^2023
tìm chữ số tận cùng của A
mik cần gấp và giải chi tiết nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2+2^2+2^3+...+2^2023
=>2A= 2^2+2^3+...+2^2023+2^2024
=>2A-A= 2^2024-2
A = (...6) - 2
A = (...4)
Vậy CSTC của A là 4
\(2A=2^2+2^3+2^4+...+2^{2024}\)
\(A=2A-A=2^{2024}-2=\left(2^4\right)^{506}-2\)
\(\left(2^4\right)^{506}\) có chữ số tận cùng là 6
=> A có chữ số tận cùng là 4
Ta có: \(2^{2023}=2^{2020+3}=2^{2020}.2^3\)
\(=\left(2^4\right)^{505}.2^3=16^{505}.8\)
\(=\left(....6\right).8\)
Vậy chữ số tận cùng sẽ luôn là 8
Ta có:
\(2^{2023}\)
\(=2^{2020+3}\)
\(=\left(2^4\right)^{505}.2^3\)
\(=16^{505}.8\)
\(=\left(...6\right)^8\)
\(=8\)
Vậy tận cùng của \(2^{2023}là8\)
Diện tích hình thoi ABCD là: 8 . 15 : 2= 60 m2
Diện tích nửa hình tam giác ABC là: 60 : 2= 30 m2
Độ dài AH là: 30 : 6 . 2= 10cm
tick nha
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
Trong dãy đó sẽ có chữ số 0
=>(-1)(-2)(-3)...(-2004) có tận cùng = 0
Chi tiết thế nào nhỉ
trong dãy kiểu gì cũng gặp rất nhiều số (2x5)=10 => tận cùng có rất nhiều số "0"
bao nhiêu số "0" mới phải tính chữ số tận cùng 100%% là "0" rồi
\(A=2+2^2+2^3+...+2^{20}\)
\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(A=\left(2+2^2+2^3+2^4\right)+2^4\times\left(2+2^2+2^3+2^4\right)+...+2^{16}\times\left(2+2^2+2^3+2^4\right)\)
\(A=30+2^4\times30+...+2^{16}\times30\)
\(A=30\times\left(1+2^4+2^5+...+2^{16}\right)\)
\(A=.........0\)
Vậy A có chữ số tận cùng là 0
A=2+2^2+2^3+...+2^20
⇒2A=2^2+2^3+...+2^21
⇒2A−A=−2+(2^2−2^2)+...+2^21
⇒A=2^21−2
⇒A=(...2)−2
⇒A=(...0)
Số tận cùng của A là 0
\(A=2+2^2+2^3+...2^{2023}\)
\(\Rightarrow A+1=1+2+2^2+2^3+...2^{2023}\)
\(\Rightarrow A+1=\dfrac{2^{2023+1}-1}{2-1}\)
\(\Rightarrow A+1=2^{2024}-1\)
\(\Rightarrow A=2^{2024}-2\)
\(\Rightarrow A=2^{2020}.2^4-2\)
\(\Rightarrow A=\left(2^{20}\right)^{101}.2^4-2\)
Ta thấy :
\(\left(2^{20}\right)^{101}\) có tận cùng là chữ số \(76\)
\(2^4=16\) có tận cùng là chữ số \(6\)
\(\Rightarrow\left(2^{20}\right)^{101}.2^4\) có tận cùng là chữ số \(6\)
\(\Rightarrow A=\left(2^{20}\right)^{101}.2^4-2\) có tận cùng là chữ số 4 \(\left(6-2=4\right)\)