K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2023

\(A=2+2^2+2^3+...2^{2023}\)

\(\Rightarrow A+1=1+2+2^2+2^3+...2^{2023}\)

\(\Rightarrow A+1=\dfrac{2^{2023+1}-1}{2-1}\)

\(\Rightarrow A+1=2^{2024}-1\)

\(\Rightarrow A=2^{2024}-2\)

\(\Rightarrow A=2^{2020}.2^4-2\)

\(\Rightarrow A=\left(2^{20}\right)^{101}.2^4-2\)

Ta thấy :

\(\left(2^{20}\right)^{101}\) có tận cùng là chữ số \(76\)

\(2^4=16\) có tận cùng là chữ số \(6\)

\(\Rightarrow\left(2^{20}\right)^{101}.2^4\) có tận cùng là chữ số \(6\)

\(\Rightarrow A=\left(2^{20}\right)^{101}.2^4-2\) có tận cùng là chữ số 4  \(\left(6-2=4\right)\)

3 tháng 1 2022

Ta có : \(7^4=..01\)

Mà 01 nâng lên lũy thừa bao nhiêu cx bằng 01

Do đó : \(7^{1991}=7^{1988}=.7^3=\left(7^4\right)^{497}.343=\left(..01\right).343=...43\)

Vậy 2 số chữ số tận cùng của  \(7^{1991}\) là : 43

3 tháng 1 2022

Diện tích hình thoi ABCD là: 8 . 15 : 2= 60 m2

Diện tích nửa hình tam giác ABC là: 60 : 2= 30 m2

Độ dài AH là: 30 : 6 . 2= 10cm

tick nha

3 tháng 1 2022

Bạn viết nhầm rồi

 

9 tháng 11 2016

Ta có:

\(3^{2^{1990}}=3^{4^{995}}=3^{...4}=9^{...2}=...1\)

nếu cần công thức thì nói vs tui   :)

9 tháng 11 2016

3^2^1990=3^3980

=(3^4)^995

=(...1)^995

=(...1)

13 tháng 3 2020

Những số có chữ số tận cùng là 2,4,8 khi nâng lên mũ 4 có tận cùng là 6

Thật vậy

\(4^{2k}=2^{4k}=...6\)

\(4^{2k+1}=2^{4k+2}=2^{4k}.4=\left(...6\right).4=...4\)

13 tháng 3 2020

ta có 4^2k=16^k=.......6

         4^2k+1=8^k.4=.....6.4=.....4

27 tháng 11 2015

đặt 3n+2 và 2n+1 = d 

suy ra 3n+2 chia hết cho d ; 2n+1 chia hết cho d

suy ra : (3n+2)-(2n+1) chia hết cho d

suy ra : 2.(3n+2)-3.(2n+1) chia hết cho d

suy ra : 1 chia hết cho d

suy ra d=1

vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau

tick cho mình nhé đúng rồi đấy

27 tháng 11 2015

Gọi UCLN(2n+5, 3n+7) là d 

Ta có 2n+5 chia hết cho d

=> 3(2n+5) chia hết cho d

=> 6n+15 chia hết cho d   (1) 

Ta có: 3n+7 chia hết cho d

=> 2(3n+7) chia hết cho d 

=> 6n+14 chia hết cho d    (2) 

Từ (1) và (2) suy ra: (6n+15) -( 6n+14) chia hết cho d 

=> 1 chia hết cho d

=> d=1

=> UCLN(2n+5, 3n+7) =1

Vậy 2n+5, 3n+7 là hai số nguyên tố cùng nhau

15 tháng 8 2019

\(A=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(A=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=1+2\left(\frac{1}{2}-\frac{1}{100}\right)=1+2.\frac{49}{100}=1+\frac{49}{50}\)

\(A=\frac{99}{50}\)

Vậy \(A=\frac{99}{50}\)