Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+...2^{2023}\)
\(\Rightarrow A+1=1+2+2^2+2^3+...2^{2023}\)
\(\Rightarrow A+1=\dfrac{2^{2023+1}-1}{2-1}\)
\(\Rightarrow A+1=2^{2024}-1\)
\(\Rightarrow A=2^{2024}-2\)
\(\Rightarrow A=2^{2020}.2^4-2\)
\(\Rightarrow A=\left(2^{20}\right)^{101}.2^4-2\)
Ta thấy :
\(\left(2^{20}\right)^{101}\) có tận cùng là chữ số \(76\)
\(2^4=16\) có tận cùng là chữ số \(6\)
\(\Rightarrow\left(2^{20}\right)^{101}.2^4\) có tận cùng là chữ số \(6\)
\(\Rightarrow A=\left(2^{20}\right)^{101}.2^4-2\) có tận cùng là chữ số 4 \(\left(6-2=4\right)\)
Diện tích hình thoi ABCD là: 8 . 15 : 2= 60 m2
Diện tích nửa hình tam giác ABC là: 60 : 2= 30 m2
Độ dài AH là: 30 : 6 . 2= 10cm
tick nha
Ta có:
\(3^{2^{1990}}=3^{4^{995}}=3^{...4}=9^{...2}=...1\)
nếu cần công thức thì nói vs tui :)
Những số có chữ số tận cùng là 2,4,8 khi nâng lên mũ 4 có tận cùng là 6
Thật vậy
\(4^{2k}=2^{4k}=...6\)
\(4^{2k+1}=2^{4k+2}=2^{4k}.4=\left(...6\right).4=...4\)
đặt 3n+2 và 2n+1 = d
suy ra 3n+2 chia hết cho d ; 2n+1 chia hết cho d
suy ra : (3n+2)-(2n+1) chia hết cho d
suy ra : 2.(3n+2)-3.(2n+1) chia hết cho d
suy ra : 1 chia hết cho d
suy ra d=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau
tick cho mình nhé đúng rồi đấy
Gọi UCLN(2n+5, 3n+7) là d
Ta có 2n+5 chia hết cho d
=> 3(2n+5) chia hết cho d
=> 6n+15 chia hết cho d (1)
Ta có: 3n+7 chia hết cho d
=> 2(3n+7) chia hết cho d
=> 6n+14 chia hết cho d (2)
Từ (1) và (2) suy ra: (6n+15) -( 6n+14) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> UCLN(2n+5, 3n+7) =1
Vậy 2n+5, 3n+7 là hai số nguyên tố cùng nhau
\(A=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1+2\left(\frac{1}{2}-\frac{1}{100}\right)=1+2.\frac{49}{100}=1+\frac{49}{50}\)
\(A=\frac{99}{50}\)
Vậy \(A=\frac{99}{50}\)