Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) 21000 = 24.250 = .....6 (có chữ số tận cùng là 6)
b) 4161 = ....4 (có chữ số tận cùng là 4)
2)
a) ta có :
n+3 chia hết cho n-1
suy ra : n-1+4 chia hết cho n-1
n-1 chia hết cho n-1
suy ra : 4 chia hết cho n-1
nên n-1 thuộc Ư(4)
Ư(4)=
ta có bảng
n-1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
b)ta có
4n+3 chia hết cho 2n+1 (1)
mà 2(2n+1) chia hết cho 2n+1 (2)
từ (1) và (2)
suy ra :
(4n+3)-(4n+1) chia hết cho 2n+1
suy ra :1chia hết cho 2n+1
suy ra : 2n+1 thuộc Ư(1)
Ư(1)= {1}
ta có
2n+1=1
2n=1-1=0
n=0
ta có: A = 31+32+33+...+32006
=> 3A = 32+33+34+...+32007
3A-A = 32007-3
2A = 32007 - 3
mà 32007 = 32004.33 = (34)501.27 = 81501.27 =( ....1).27 => 32007 có chữ số tận cùng là 7
=> 32007-3 có chữ số tận cùng là: 7-3 = 4
=> 2A = 32007 - 3 có chữ số tận cùng là 4
\(\Rightarrow A=\frac{3^{2007}-3}{2}\) có chữ số tận cùng là 2 hoặc 7
mà A = 31+32+33+...+32006 chia hết cho 2
=> A có chữ số tận cùng là 2
Loại trừ số 1 ra thì tổng này có: (30-1):1+1=30 (số hạng)
Ta thấy: tổng của 4 số liên tiếp nhau (tính từ 3^1) có tận cùng là 0. Suy ra: 28 số như thế thì tận cùng vẫn là 0.
Mà trong tổng (trừ số 1) có 30 số hạng.
=> Tổng có tận cùng là 2. (vì theo quy luật tính từ 3^1 thì 4 số liên tiếp sẽ có tận cùng là 3, 9, 7, 1 rồi lại 3, 9, 7, 1, suy ra 2 số hạng còn lại của tổng là 3^29 và 3^30 thì có tận cùng lần lượt là 3, 9 cộng vào tận cùng là 2, 28 số hạng kia tận cùng là 0 cộng 2 vào nữa thì bằng 2)
A= 1+3^1+3^2+3^3+...+3^30 có tận cùng là 3 (tự suy nhé)
Mà số chính phương thì tận cùng là 1, 4, 5, 6, 9
Vậy A ko phải là số chính phương.
a. \(5^{23}.5^3.5=5^{23+3+1}=5^{27}\)
\(3^5:9^2.9=3^5:\left(3^2\right)^2.3^2=3^5:3^4.3^2=3^{5-4+2}=3^3\)
b. A = {2; 3; 5; 7}
Bạn linh làm trước mà ko l ke lại l ike bạn kia, bất công bạn linh!