K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 4 2022

Giới hạn này không tồn tại

23 tháng 2 2021

a/ \(\lim\limits_{x\rightarrow-1}\dfrac{2x^3-5x-4}{\left(x+1\right)^2}=\dfrac{2.\left(-1\right)^3-5\left(-1\right)-4}{\left(-1+1\right)^2}=-\dfrac{1}{0}=-\infty\)

b/ \(\lim\limits\left(x^3+2\sqrt{x^5}-1\right)=\lim\limits x^3\left(1+0-0\right)=+\infty\)

 

23 tháng 2 2021

giúp em câu này với ạ https://hoc24.vn/hoi-dap/tim-kiem?id=353722985710&q=lim%C2%A0\(\dfrac{1-\dfrac{1}{x}}{1+\dfrac{1}{x}}\)%C2%A0khi+x+ti%E1%BA%BFn+t%E1%BB%9Bi+0

26 tháng 12 2023

\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+x}+2x-1\right)\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-\left(2x-1\right)^2}{\sqrt{4x^2+x}-2x+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-4x^2+4x-1}{\sqrt{4x^2+x}-2x+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x-1}{-x\cdot\sqrt{4+\dfrac{1}{x}}-2x+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5-\dfrac{1}{x}}{-\sqrt{4+\dfrac{1}{x}}-2+\dfrac{1}{x}}\)

\(=\dfrac{5-0}{-\sqrt{4+0}-2+0}=\dfrac{5}{-4}=-\dfrac{5}{4}\)

26 tháng 12 2023

Cảm ơn ạ

tính delta trước nha bạn

6 tháng 6 2023

Tại sao vậy ạ?

1 tháng 8 2020

3/5:x=1/3

x=3/5:1/3

x=9/5

\(\frac{3}{5}\div x=\frac{1}{3}\)

\(x=\frac{3}{5}\div\frac{1}{3}=\frac{9}{5}\)

28 tháng 12 2020

khoảng cách từ nơi bạn Nam đứng tới nơi sét đánh là: 340.2=680(m)

gọi s =khoảng cách

     t= thời gian

    v=vận tốc

=>ta có s=v.t s=>s=2.340m=680m

6 tháng 7 2016

11 x1=121 nhé

6 tháng 7 2016

a nhầm,mình tưởng 11 x11 mà 11x1=11

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Bạn nên gõ lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ tốt hơn bạn nhé.

29 tháng 12 2023

\(\lim\limits_{x\rightarrow-\infty}\sqrt{4x^2+x}+2x-1\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-\left(2x-1\right)^2}{\sqrt{4x^2+x}-2x+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-4x^2+4x-1}{-x\sqrt{4+\dfrac{1}{x}}-2x+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x-1}{-x\cdot\sqrt{4+\dfrac{1}{x}}-2x+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5-\dfrac{1}{x}}{-\sqrt{4+\dfrac{1}{x}}-2+\dfrac{1}{x}}\)

\(=\dfrac{5-0}{-\sqrt{4+0}-2+0}=\dfrac{5}{-4}=-\dfrac{5}{4}\)