Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\lim\limits_{x\rightarrow-1}\dfrac{2x^3-5x-4}{\left(x+1\right)^2}=\dfrac{2.\left(-1\right)^3-5\left(-1\right)-4}{\left(-1+1\right)^2}=-\dfrac{1}{0}=-\infty\)
b/ \(\lim\limits\left(x^3+2\sqrt{x^5}-1\right)=\lim\limits x^3\left(1+0-0\right)=+\infty\)
giúp em câu này với ạ https://hoc24.vn/hoi-dap/tim-kiem?id=353722985710&q=lim%C2%A0\(\dfrac{1-\dfrac{1}{x}}{1+\dfrac{1}{x}}\)%C2%A0khi+x+ti%E1%BA%BFn+t%E1%BB%9Bi+0
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+x}+2x-1\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-\left(2x-1\right)^2}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-4x^2+4x-1}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x-1}{-x\cdot\sqrt{4+\dfrac{1}{x}}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5-\dfrac{1}{x}}{-\sqrt{4+\dfrac{1}{x}}-2+\dfrac{1}{x}}\)
\(=\dfrac{5-0}{-\sqrt{4+0}-2+0}=\dfrac{5}{-4}=-\dfrac{5}{4}\)
Bạn nên gõ lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ tốt hơn bạn nhé.
\(\lim\limits_{x\rightarrow-\infty}\sqrt{4x^2+x}+2x-1\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-\left(2x-1\right)^2}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-4x^2+4x-1}{-x\sqrt{4+\dfrac{1}{x}}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x-1}{-x\cdot\sqrt{4+\dfrac{1}{x}}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5-\dfrac{1}{x}}{-\sqrt{4+\dfrac{1}{x}}-2+\dfrac{1}{x}}\)
\(=\dfrac{5-0}{-\sqrt{4+0}-2+0}=\dfrac{5}{-4}=-\dfrac{5}{4}\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-x+x-\sqrt[3]{x^3-x^2}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x}{\sqrt{x^2+x}+x}+\dfrac{x^2}{x^2+x.\sqrt[3]{x^3-x^2}+\sqrt[3]{\left(x^3-x^2\right)^2}}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{1+\dfrac{1}{x}}+1}+\dfrac{1}{1+\sqrt[3]{1-\dfrac{1}{x}}+\sqrt[3]{\left(1-\dfrac{1}{x}\right)^2}}\right)\)
\(=\dfrac{1}{\sqrt{1+0}+1}+\dfrac{1}{1+\sqrt[3]{1-0}+\sqrt[3]{\left(1-0\right)^2}}\)
\(=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(x-1\right)^2}{x\left(x^2+5\right)}=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-2x+1}{x\left(x^2+5\right)}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}+\dfrac{1}{x^2}}{x\left(1+\dfrac{5}{x^2}\right)}=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{x}\cdot\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}+\dfrac{1}{x^2}}{1+\dfrac{5}{x^2}}\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow+\infty}\dfrac{1}{x}=+\infty\\\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}+\dfrac{1}{x^2}}{1+\dfrac{5}{x^2}}=\dfrac{1}{1}=1>0\end{matrix}\right.\)
Giới hạn đến 2- thì là x nhỏ hơn 2, giới hạn đến 2+ thì là lớn hơn 2
Mà thật ra là bạn chỉ nên quan đến khi x tiến đến 2- hay 2+ khi có dấu căn hoặc là giá trị tuyệt đối thôi, còn trong những dạng này thì thay như bình thường. Mẫu bằng 0 thì xem trên tử, tử bằng 0 thì biến đổi hoặc tử khác 0 thì sẽ ra kết quả luôn
\(\lim\limits_{x\rightarrow2^-}\dfrac{3x^2+x-1}{2x^2-5x+2}\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2^-}3x^2+x-1=3\cdot2^2+2-1=3\cdot4+1=13>0\\\lim\limits_{x\rightarrow2^-}2x^2-5x+2=2\cdot2^2-5\cdot2+2=0\\\end{matrix}\right.\)
Giới hạn 1 phía thì gần như bạn kia nói (mặc dù cuối cùng lại kết luận sai). Với \(x\rightarrow2^-\) thì đồng nghĩa \(x< 2\), nên khi đó nhìn lên khu vực xét dấu của \(2x^2-5x+2\) ta sẽ biết nó âm hay dương.
Nếu giới hạn \(x\rightarrow2\) mà tử, mẫu có cùng nhân tử \(x-2\) (nghĩa là rút gọn được) thì làm bình thường. Còn nếu chỉ có mẫu tiến tới 0, tử tiến tới 1 số khác 0 thì có thể kết luận ngay là giới hạn này ko tồn tại (ngoại trừ trường hợp dấu của mẫu số ko đổi khi x đi qua 2, ví dụ như \(\left(2x^2-5x+2\right)^2\) thì nó luôn dương, hoặc \(\left|2x^2-5x+2\right|\) cũng vậy)
Ví dụ cụ thể: \(\lim\limits_{x\rightarrow2^-}\dfrac{3x^2+x-1}{2x^2-5x+2}=-\infty\)
\(\lim\limits_{x\rightarrow2}\dfrac{3x^2+x-1}{2x^2-5x+2}\) không tồn tại.
\(\lim\limits_{x\rightarrow2}\dfrac{3x^2+x-1}{\left|2x^2-5x+2\right|}=+\infty\)
\(\lim\limits_{x\rightarrow2}\dfrac{3x^2+x-1}{-\left(2x^2-5x+2\right)^2}=-\infty\)
Theo định nghĩa về giới hạn tại 1 điểm: giới hạn tại 1 điểm chỉ tồn tại khi giới hạn trái và giới hạn phải tại đó bằng nhau.
Nghĩa là muốn \(\lim\limits_{x\rightarrow a}f\left(x\right)\) thì \(\lim\limits_{x\rightarrow a^+}f\left(x\right)=\lim\limits_{x\rightarrow a^-}f\left(x\right)\)
Trong ví dụ của em \(\lim\limits_{x\rightarrow2^-}f\left(x\right)=-\infty\) còn \(\lim\limits_{x\rightarrow2^+}f\left(x\right)=+\infty\)
Rõ ràng là \(-\infty\ne+\infty\) nên \(\lim\limits_{x\rightarrow2}\dfrac{3x^2+x-1}{2x^2-5x+2}\) ko tồn tại
Giới hạn này không tồn tại