K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

a) 

Theo tính chất 2 tiếp tuyến cắt nhau ta có $CM=CA$. Mà $CM\perp MO, CA\perp OA$ nên $C$ cách đều 2 cạnh $OM, OA$. Do đó $OC$ là phân giác $\widehat{MOA}$

$\Rightarrow \widehat{COM}=\frac{1}{2}\widehat{AOM}$

Tương tự:

$\widehat{DOM}=\frac{1}{2}\widehat{DOM}$

$\Rightarrow \widehat{COD}=\widehat{COM}+\widehat{DOM}=\frac{1}{2}\widehat{AOB}=90^0$

$\Rightarrow \triangle COD$ vuông tại $O$

b) 

$AC.BD=CM.DM(1)$

Tam giác $COD$ vuông tại $O$ có $OM\perp CD$ nên theo hệ thức lượng trong tam giác ta có:

$CM.DM=OM^2=R^2(2)$

Từ $(1);(2)\Rightarrow AC.BD=R^2$

c) Gọi $I$ là giao $BC$ và $MH$

$K$ là giao $BM$ và $Ax$

Ta có:

Vì $KC\parallel DB$ nên $\widehat{CKM}=\widehat{DBM}$ (so le trong)

$\widehat{DBM}=\widehat{DMB}=\widehat{KMC}$ (do $DM=DB$ nên tam giác $DMB$ cân tại D)

Do đó: $\widehat{CKM}=\widehat{KMC}$ nên tam giác $CKM$ cân tại $C$

$\Rightarrow CK=CM$. Mà $CM=CA$ nên $CK=CA$

Mặt khác:

$MH\parallel Ax$ (cùng vuông góc $AB$) nên theo định lý Talet:

$\frac{MI}{KC}=\frac{BI}{BC}=\frac{IH}{CA}$ 

Vừa cm được $KC=CA$ nên $MI=IH$ hay $I$ là trung điểm $MH$

Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:undefined

8 tháng 3 2020

cho mk cả lời giải của các phần trên đc ko mèo con dễ thương

8 tháng 3 2020

mk cần gấp

a: góc CAO+góc CMO=180 độ

=>CAOM nội tiếp

góc DMO+góc DBO=180 độ

=>DMOB nội tiếp

b: Xét (O) có

CM,CA là tiếp tuyến

=>CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc DOC=1/2*180=90 độ

Xét ΔDOC vuông tại O có OM là đường cao

nên CM*MD=OM^2

=>AC*BD=R^2

7 tháng 5 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

28 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

∆ ACB nội tiếp trong đường tròn (O) có AB là đường kính nên  ∆ ABC vuông tại C

CO = OA = (1/2)AB (tính chất tam giác vuông)

AC = AO (bán kính đường tròn (A))

Suy ra: AC = AO = OC

∆ ACO đều góc AOC = 60 °

∆ ADB nội tiếp trong đường tròn đường kính AB nên  ∆ ADB vuông tại D

DO = OB = OA = (1/2)AB (tính chất tam giác vuông)

BD = BO(bán kính đường tròn (B))

Suy ra: BO = OD = BD

∆ BOD đều

15 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

30 tháng 7 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Mà AD, CO là hai đường chéo của hình thoi AODC nên AD vuông góc với OC

21 tháng 7 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (O) ta có:

góc ADC = góc ABC (2 góc nội tiếp cùng chắn cung AC