K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

a, MPHQ là hình chữ nhật => MH = PQ

b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA

c, P M H ^ = M B H ^ => P Q H ^ = O 2 Q B ^ => PQ là tiếp tuyến của  O 2

Tương tự PQ cũng là tiếp tuyến ( O 1 )

1 tháng 2 2022
21 tháng 2 2022

a) Vì AH, HB, AB đều là các đường kính của các nửa đường tròn (O1) , (O2) và (O) nên tứ giác MPHQ có ba góc P, Q, M vuông. Vì vậy nó là hình chữ nhật.

Từ đó, ta có HM = PQ.
b) Vì MHPQ là hình chữ nhật nên \widehat{MPQ}=\widehat{MHQ}=\widehat{MBH}\left(=\dfrac{\stackrel\frown{HQ}}{2}\right), do đó APQB là tứ giác nội tiếp.

c) Ta có \widehat{O_1PA}=\widehat{PAO_1}=90^o-\widehat{HMP}=90^o-\widehat{MPQ}

\Rightarrow\widehat{O_1PA}+\widehat{MPQ}=90^o\Rightarrow\widehat{O_1PQ}=90^o nên PQ tiếp xúc nửa đường tròn (O1) tại P. 

Tương tự , PQ tiếp xúc (O2) tại Q hay PQ là tiếp tuyến chung của hai nửa đường tròn (O1) và (O2)

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: OC là tia phân giác của \(\widehat{AOM}\)

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: OD là tia phân giác của \(\widehat{BOM}\)

Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

hay \(\widehat{COD}=90^0\)

3 tháng 9 2021

mik đag cần gấp ạ^^

 

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA

Xét (O) có

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: MC+MD=CD

mà MC=CA

và MD=DB

nên CD=AC+BD

20 tháng 4 2020

cho mik đúng ik

a: Xét tứ giác OBDM có

góc OBD+góc OMD=180 độ

=>OBDM là tư giác nội tiếp

c: Xét ΔKOB và ΔKFE có

góc KOB=góc KFE

góc OKB=góc FKE

=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE

=>KO*KE=KB*KF