K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

A B C D H E O

a/ Nối A với D ta có

\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)

=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp

b/ 

Xét tg vuông ACO có

\(\widehat{ACO}+\widehat{AOC}=90^o\)

Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)

Xét tứ giác nội tiếp AHDC có

 \(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)

\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)

Xét tam giác EOH và tg EBD có

\(\widehat{BED}\) chung

\(\widehat{AOC}=\widehat{EDB}\)

=> tg EOH đồng dạng với tg EDB (g.g.g)

\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)

 

 

 

10 tháng 5 2022

a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)

Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC

\(\Rightarrow AHDC\) là tứ giác nội tiếp

b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)

Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)

Xét \(\Delta EOH\) và \(\Delta EDB\) có:

\(\widehat{BED}\) chung

\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)

\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)

26 tháng 7 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) CE và EB là 2 tiếp tuyến cắt nhau tại E

⇒ EC = EB và CB ⊥ OE

Tương tự, DC và DA là 2 tiếp tuyến cắt nhau tại D

⇒ DC = DA và AC ⊥ OD

Khi đó: AD + BE = DC + EC = DE

17 tháng 8 2017

a, Từ CA, CM là tiếp tuyến của (O) chứng minh được A,C,M,O ∈ đường tròn bán kính  O C 2

b, Chứng minh OC,BM cùng vuông góc với AM . từ đó suy ra OC//BM

c,  S A C D B = A C + B D A B 2 = A D . A B 2

=>  S A C D B  nhỏ nhất khi CD có độ dài nhỏ nhất

Hay M nằm chính giữa cung AB

d, Từ tính chất hai giao tuyến => AC = CM và BM=MD, kết hợp với AC//BD

ta chứng minh được  C N N B = C M M D => MN//BD => MN ⊥ AB