K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

∆ ACB nội tiếp trong đường tròn (O) có AB là đường kính nên  ∆ ABC vuông tại C

CO = OA = (1/2)AB (tính chất tam giác vuông)

AC = AO (bán kính đường tròn (A))

Suy ra: AC = AO = OC

∆ ACO đều góc AOC = 60 °

∆ ADB nội tiếp trong đường tròn đường kính AB nên  ∆ ADB vuông tại D

DO = OB = OA = (1/2)AB (tính chất tam giác vuông)

BD = BO(bán kính đường tròn (B))

Suy ra: BO = OD = BD

∆ BOD đều

30 tháng 7 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Mà AD, CO là hai đường chéo của hình thoi AODC nên AD vuông góc với OC

7 tháng 5 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

15 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

21 tháng 7 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (O) ta có:

góc ADC = góc ABC (2 góc nội tiếp cùng chắn cung AC

23 tháng 6 2017

Đường kính và dây của đường tròn

a) Xét (O) có 

\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{DCB}=90^0\)

Xét tứ giác DCBO có 

\(\widehat{DCB}\) và \(\widehat{DOB}\) là hai góc đối

\(\widehat{DCB}+\widehat{DOB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DCBO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)