K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

a) 

Theo tính chất 2 tiếp tuyến cắt nhau ta có $CM=CA$. Mà $CM\perp MO, CA\perp OA$ nên $C$ cách đều 2 cạnh $OM, OA$. Do đó $OC$ là phân giác $\widehat{MOA}$

$\Rightarrow \widehat{COM}=\frac{1}{2}\widehat{AOM}$

Tương tự:

$\widehat{DOM}=\frac{1}{2}\widehat{DOM}$

$\Rightarrow \widehat{COD}=\widehat{COM}+\widehat{DOM}=\frac{1}{2}\widehat{AOB}=90^0$

$\Rightarrow \triangle COD$ vuông tại $O$

b) 

$AC.BD=CM.DM(1)$

Tam giác $COD$ vuông tại $O$ có $OM\perp CD$ nên theo hệ thức lượng trong tam giác ta có:

$CM.DM=OM^2=R^2(2)$

Từ $(1);(2)\Rightarrow AC.BD=R^2$

c) Gọi $I$ là giao $BC$ và $MH$

$K$ là giao $BM$ và $Ax$

Ta có:

Vì $KC\parallel DB$ nên $\widehat{CKM}=\widehat{DBM}$ (so le trong)

$\widehat{DBM}=\widehat{DMB}=\widehat{KMC}$ (do $DM=DB$ nên tam giác $DMB$ cân tại D)

Do đó: $\widehat{CKM}=\widehat{KMC}$ nên tam giác $CKM$ cân tại $C$

$\Rightarrow CK=CM$. Mà $CM=CA$ nên $CK=CA$

Mặt khác:

$MH\parallel Ax$ (cùng vuông góc $AB$) nên theo định lý Talet:

$\frac{MI}{KC}=\frac{BI}{BC}=\frac{IH}{CA}$ 

Vừa cm được $KC=CA$ nên $MI=IH$ hay $I$ là trung điểm $MH$

Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:undefined

21 tháng 12 2016

TIA BM CAT Ax TAI, N TIEP THEO TU LAM

26 tháng 12 2016

A B M C D E H

Câu c: \(BM\) cắt \(AC\) tại \(E\). Như vậy thì tam giác \(EMA\) vuông tại \(M\).

\(CA=CM\) nên \(\widehat{EAM}=\widehat{CMA}\).

Mà \(\widehat{EAM}+\widehat{AEB}=90^o=\widehat{CMA}+\widehat{EMC}\) nên \(\widehat{AEM}=\widehat{EMC}\).

Tức là \(CE=CM=CA\) hay \(C\) là trung điểm \(AM\)

Đến đây bạn để ý \(MH\) song song với \(AM\) và dùng định lí Thales là CM được.

3 tháng 12 2018

Gọi N là giao MH với BC ( N thuộc MH )

Tương tựTrần Quốc Đạt thì C là trung điểm AE

Vì MN // CE nên theo Ta-let

\(\frac{MN}{CE}=\frac{BN}{BC}\)

Vì NH // CA nên theo Talet

\(\frac{BN}{BC}=\frac{NH}{CA}\)

\(\Rightarrow\frac{MN}{CE}=\frac{NH}{CA}\)

Mà CE = CA (trung điểm)

\(\Rightarrow MN=NH\)=> N là trung điểm MH

Nên BC đi qua trung điểm N của MH

P/S : BÀi này ko liên quan tới A,N,D thẳng hàng nhé !

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

hay ΔCOD vuông tại O

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(MC\cdot MD=MO^2=R^2=AC\cdot BD\)

a: Xét (O) có

CM,CA là tiếp tuyến

=>CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

=>ΔCOD vuông tại O

b: AC*BD=CM*DM=OM^2=R^2

6 tháng 6 2016
Giúp mình đi mọi người
7 tháng 6 2016

Cô hướng dẫn nhé nguyen van vu :)

K

a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)

b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.

c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.

Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)

nên ID =MD, mà MD=DB nên ID=DB.

Gọi K là giao của MH và AD.

Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)

Tương tự giao điểm của BC với MH cũng là trung điểm MH.

Tóm lại N trùng K hay MN vuông góc AB.