Cho nửa đường tròn (O; R) đường kính BC. Lấy điểm A trên tia đối của tia CB. Kẻ tiếp tuyến AF của nửa đường tròn (O) (vói F là tiếp điểm), tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Cho biết AF = 4 R 3
a, Chứng minh tứ giác OBDF nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác này
b, Tính côsin góc D A B ^
c, Kẻ OM ^ BC (M Î AD). Chứng minh
B
D
D
M
-
D
M
A
M
=
1
d, Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O) theo R
a, Chứng minh được DBOF nội tiếp đường tròn tâm I là trung điểm của DO
b, O A = O F 2 + A F 2 = 5 R 3 => cos D A B ^ = A F A O = 4 5
c, ∆AMO:∆ADB(g.g) => D M A M = O B O A
mà M O D ^ = O D B ^ = O D M ^ => DM = OM
=> D B D M = D B O M = A D A M . Xét vế trái B D D M - D M A M = A D - D M A M = 1
d, D B = A B . tan D A B ^ = 8 R 3 . 3 4 = 2 R => O M = A O . tan D A B ^ = 5 R 4
=> S O M D B = 13 R 2 8
S O M D B ngoài = S O M D B - 1 4 S O , R = R 2 8 13 - 2 π