Viết các biểu thức sau dưới dạng tổng hoặc hiệu các lập phương
a) (x + 5)( x 2 – 5x + 25); b) (1 – x)( x 2 + x + 1);
c) (y + 3t)(9 t 2 – 3yt + y 2 ); d) 4 − u 2 u 2 4 + 2 u + 16 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=\left(x+2\right)\left(x^2-2x+4\right)\\ b,=\left(x-4\right)\left(x^2+8x+16\right)\\ c,=\left(3x+1\right)\left(9x^2-3x+1\right)\\ d,=\left(4m-3\right)\left(16m^2+12m+9\right)\\ 2,\\ a,=x^3+125\\ b,=1-x^3\\ c,=y^3+27t^3\)
a)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
b)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
c)=\(\left(3x+1\right)\left(9x^2-3x+1\right)\)
d)
=\(\left(4m-3\right)\left(16m^2+12m+9\right)\)
1, \(x^2+2xy+y^2=\left(x+y\right)^2\)
2, \(4x^2+12x+9=\left(2x\right)^2+2\cdot3\cdot2x+3^2=\left(2x+3\right)^2\)
3, \(x^2+5x+\dfrac{25}{4}=x^2+2\cdot\dfrac{5}{2}\cdot x+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)
4, \(16x^2-8x+1=\left(4x\right)^2-2\cdot4x\cdot1+1^2=\left(4x-1\right)^2\)
5, \(x^2+x+\dfrac{1}{4}=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
1: =(x+y)^2
2: =(2x+3)^2
3: =(x+5/2)^2
4: =(4x-1)^2
5: =(x+1/2)^2
6: =(x-3/2)^2
7: =(x+1)^3
8: =(1/2x+1)^2
9: =(3y-1/3)^3
10: =(2x+y)^3
a: \(\left(3x-1\right)\left(9x^2+3x+1\right)=27x^3-1\)
b: \(\left(1-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{5}+1\right)=1-\dfrac{x^3}{125}\)
c: \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
d: \(\left(4x+3y\right)\left(16x^2-12xy+9y^2\right)=64x^3+27y^3\)
a) \(\left(2x+1\right)^3\)
\(=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\)
\(=8x^3+12x^2+6x+1\)
b) \(\left(x-3\right)^3\)
\(=x^3-3.x^2.3+3.x.3^2-3^3\)
\(=x^3-9x^2+27x-27\)
Bài 2:
a: \(x^3+15x^2+75x+125=\left(x+5\right)^3\)
b: \(1-15y+75y^2-125y^3=\left(1-5y\right)^3\)
c: \(8x^3+4x^2y+\dfrac{3}{2}xy^2+8y^3=\left(2x+2y\right)^3\)
Bài 1:
c: \(\left(-5x-y\right)^3=-125x^3-75x^2y-15xy^2-y^3\)
h: \(\left(3y-2x^2\right)^3=27y^3-54y^2x^2+36yx^4-8x^6\)
\(a,x^2+5x+\frac{25}{4}\)
\(=x^2+2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2\)
\(=\left(x+\frac{5}{2}\right)^2\)
HĐT số 4: \(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)
__________
\(x^3+3x^2+3x+1\)
\(=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3\)
\(=\left(x+1\right)^3\)
\(a,x^3+6x^2y+12xy^2+8y^3\\ =x^3+3.2x^2+3.2^2.x+\left(2y\right)^3\\ =\left(x+2y\right)^3\)
\(b,x^3-3x^2+3x-1\\ =x^3-3x^2.1+3x.1^2-1^3\\ =\left(x-1\right)^3\)
a) \(x^3+6x^2y+12xy^2+8y^3\)
\(=x^3+3\cdot x^2\cdot2y+2\cdot x\cdot\left(2y\right)^2+\left(2y\right)^3\)
\(=\left(x+2y\right)^3\)
b) \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)