K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

*Sửa lại đề*

A = 21+ 22+ 23+ 24 + .. + 2100

A = (21+22) + (23+ 24) +...+ (299+ 2100)

A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)

A = 2.3 + 23. 3 + .. + 299.3

A = 3 . (21 + 23 + .... + 299)

Mà 3 chia hết cho 3 

=> A chia hết cho 3

28 tháng 12 2022

loading...

DD
9 tháng 11 2021

\(A=2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6\left(1+2^2+...+2^{98}\right)\)chia hết cho \(6\).

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+...+2^{99}(1+2)$

$=2.3+2^3.3+...+2^{99}.3$

$=3(2+2^3+...+2^{99})\vdots 3$

Ta có đpcm.

23 tháng 10 2021

\(A+2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)

23 tháng 10 2021

\(A=2+2^2+2^3+2^4+...+2^{100}\)

\(=2\cdot3+...+2^{99}\cdot3\)

\(=6\left(1+...+2^{99}\right)⋮6\)

26 tháng 12

A = 1 + 21 + 22 + 23 + ...+ 2100 + 2101

A = 20 + 21 + 22 + 23 + ...+ 2100 + 2101

Xét dãy số:0; 1; 2; 3;...; 100; 101

Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Số số hạng của dãy số trên là: (101 - 0) : 1 + 1  = 102 (số) 

Vì 102 : 3 = 34 

Vậy nhóm ba số hạng liên tiếp của A vào nhau ta được 

A = (1 + 21 + 22) + (23 + 24 + 25) + ...+ (299 + 2100 + 2101)

A = (1 + 21 + 22) + 23.(1 + 21 + 22) + ...+ 299.(1 + 21 + 22)

A = (1 + 21 + 22).(1 + 23 + ...+ 299)

A = 7.(1 + 23 + ...+ 299) ⋮ 7 (đpcm)

 

 

 

AH
Akai Haruma
Giáo viên
21 tháng 10 2023

Lời giải:
Đặt $A=1+2^2+2^4+....+2^{100}$

$A=(1+2^2+2^4)+(2^6+2^8+2^{10})+.....+(2^{96}+2^{98}+2^{100})$

$A=(1+2^2+2^4)+2^6(1+2^2+2^4)+....+2^{96}(1+2^2+2^4)$

$=(1+2^2+2^4)(1+2^6+....+2^{96})$

$=21(1+2^6+....+2^{96})\vdots 21$ 

Ta có đpcm.

13 tháng 11 2023

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

19 tháng 3 2021

Ta có : 

\(A=2+2^2+2^3+2^4...2^{2010}\)\(^0\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=2.3+2^3.3+....+2^{2009}.3\)

\(=3\left(2+2^3+....+2^{2009}\right)⋮3\)

Ta có :

\(2+2^2+2^3+2^4+....+2^{2010}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+....+2^{2008}.7\)

\(=7\left(2+2^4+....+2^{2008}\right)⋮7\)

Vậy \(2^1+2^2+2^3+2^4+...+2^{2010}⋮3\) và \(7\)