K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

*Sửa lại đề*

A = 21+ 22+ 23+ 24 + .. + 2100

A = (21+22) + (23+ 24) +...+ (299+ 2100)

A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)

A = 2.3 + 23. 3 + .. + 299.3

A = 3 . (21 + 23 + .... + 299)

Mà 3 chia hết cho 3 

=> A chia hết cho 3

A=2(1+2)+2^3(1+2)+...+2^2009(1+2)

=3(2+2^3+...+2^2009) chia hết cho 3

A=2(1+2+2^2)+2^4(1+2+2^2)+...+2^2008(1+2+2^2)

=7(2+2^4+...+2^2008) chia hết cho 7

6 tháng 11 2020

Áp dụng hàng đơn vị , chia từng cặp , như vậy mỗi cặp có hàng đơn vị sẽ có dạng 1 + 2 + 3 + 4 + ..... + 10 = 55 và sẽ chia hết cho 5 .

Vậy M hoàn toàn chia hết cho 5 .

Tưởng ghi kiểu 2^1 + 2^2 + 2^3 + ... + 2^20 chứ ai dè ra đề bài dễ quá ta XD

10 tháng 10 2017

Sửa đề : 2 + 2+ 23 + ... + 260
2 + 2+ 23 + ... + 260 = ( 2 + 22 + 23 + 24 ) + ( 2+ 26 + 27 + 28 ) + .... + ( 257 + 258 + 259 + 260 )
                                 =20. 30 + 24 . 30 + ... + 256 . 30
                                 = ( 20 + 24 + ... + 256) . 2 . 15 \(⋮\)15
 

15 tháng 3 2016

a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)

Ta có: 55 chia hết cho 11 

Nên \(7^4.55\)chia hết cho 11

Hay \(7^6+7^5-7^4\)chia hết cho 11

Câu b,c làm tương tự

13 tháng 7 2017

A = \(4+4^2+4^3+.....+4^{23}+4^{24}\)

  = \(4\left(1+4+4^2\right)+.....+4^{22}+\left(1+4+4^2\right)\)

\(4.21+.....+4^{22}.21\)

\(21\left(4+...+4^{22}\right)⋮21\)

Vậy A chia hết cho 21

Ai k mik mik k lại nha

13 tháng 7 2017

Lâu r chị k nhớ lắm nhé

CM A chia hết cho 20

A = 4(1+4+4^2+...+4^23) chia hết cho 4 (1)

A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)

   = 4(1+4) + 4^3(1+4) +...+4^23(1+4)

   = (1+4)(4+4^3+4^5+...+4^23)

   =5.(4+4^3+4^5+...+4^23) chia hết cho 5 (2)

Mà UCLN(4,5)=1 (3)

Vậy A chia hết cho 4.5 =20

CM A chia hết cho 21

A = (4+4^2+4^3)+(4^4+4^5+4^6)+...+(4^22+4^23+4^24)

   = 4(1+4+4^2) +4^4(1+4+4^2)+...+4^22(1+4+4^2)

   = (1+4+4^2)(4+4^4+...+4^22)

   = 21(4+4^4+...+4^22) chia hết cho 21

Vậy A chia hết cho 24.

Chúc e học giỏi!

19 tháng 7 2021

llllllllllllllllllllllllllll

a) Ta có: \(32^{12}\cdot98^{20}\)

\(=2^{60}\cdot2^{20}\cdot7^{40}\)

\(=2^{80}\cdot7^{40}\)

\(=\left(2^2\cdot7\right)^{40}=28^{40}\)(đpcm)

b) Ta có: \(3^{1994}+3^{1993}-3^{1992}\)

\(=3^{1992}\left(3^2+3-1\right)\)

\(=3^{1992}\cdot11⋮11\)