Cho tam giác DEF vuông tại D và có đường cao DH A, Chứng minh rằng tam giác DEF~HED~HDF Bê, chứng minh rằng: ED^2=EF.EH; FD^2= FE.FH Giúp mình với mai mình KT rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: IK//DH
a: Xét ΔDEF vuông tại D và ΔHED vuông tại H có
góc E chung
=>ΔDEF đồng dạng với ΔHED
=>DF/DH=EF/DE=DE/HE
=>EH*EF=ED^2
b: Xét ΔFIK vuông tại I và ΔFDE vuông tại D có
góc F chung
=>ΔFIK đồng dạng với ΔFDE
=>FI/FD=FK/FE
=>FI*FE=FK*FD
c: góc KDE+góc KIE=180 độ
=>KDEI nội tiếp
=>góc DKE=góc DIE và góc DEK=góc DIK
mà góc DIE=góc DIK
nên góc DKE=góc DEK
=>ΔDEK cân tại D
a, Xét \(\Delta\)DEF và \(\Delta\)HED ta cs
^EDF = ^EHD = 900
^E - chug
=> \(\Delta\)DEF đồng dạng \(\Delta\)HED
b, Xét \(\Delta\)DEF và \(\Delta\)HDF ta cs
^EDF = ^DHF = 900
^F - chug
=> \(\Delta\)DEF đồng dạng \(\Delta\)HDF
=> \(\frac{DF}{EF}=\frac{FH}{DF}\)( đ/n )
=> DF2 = FH . EF
c, chưa nghĩ ra
Vì \(DH \bot EF \Rightarrow \widehat {DHE} = 90^\circ \)
Xét tam giác \(DEH\) và tam giác \(FDE\) ta có:
\(\widehat E\) chung
\(\widehat {DHE} = \widehat {EDF} = 90^\circ \).
Do đó, \(\Delta DEH\backsim\Delta FED\) (g.g)
Suy ra, \(\frac{{DE}}{{EF}} = \frac{{EH}}{{DE}} \Rightarrow D{E^2} = EF.EH\) (điều phải chứng minh).
a) xét ΔHED và ΔDEF có
\(\widehat{EHD}=\widehat{EDF}=\)90o
\(\widehat{E} chung\)
=> ΔHED ∼ ΔDEF (gg)
b) Xét ΔDEF có \(\widehat{D}=\)90o
=> DE2+DF2=EF2
=>62+82=EF2
=> EF=10 cm
SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10
=> DH =4,8 cm
c) Xét ΔDEH có \(\widehat{EHD}=90\)o
=> HD2.HE2=ED2
=>4.82+HE2=62
=> HE=3.6
ta lại có DI là phân giác
=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)
=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2
=> IH=EH-EI=3.6-2=1.6
a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có
\(\widehat{HED}\) chung
Do đó: ΔHED\(\sim\)ΔDEF(g-g)
ΔDEF cân tại D có DH là đường cao
nên DH là đường trung tuyến ứng với cạnh EF
=>H là trung điểm của EF
=>HE=HF
a) Xét ΔDEF vuông tại D và ΔHED vuông tại H có
\(\widehat{E}\) chung
Do đó: ΔDEF\(\sim\)ΔHED(g-g)
b) Ta có: ΔDEF\(\sim\)ΔHED(cmt)
nên \(\dfrac{DE}{HE}=\dfrac{EF}{ED}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(DE^2=EF\cdot EH\)(đpcm)