Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://vn.answers.yahoo.com/question/index?qid=20111212062832AACt3bZ
Ta có : x6n-1=(x6-1).A=(x2-1)(x4+x2+1)A chia hết cho x4 + x2 +1
Khi đó : M=x200+x100+1=x200-x2+x100-x4+(x4+x2+1)= x2[(x6)33-1]-x4 [(x6)16-1]+(x4 + x2 +1)
Vì x2[(x6)33-1]chia hết cho x4 + x2 +1
x4 [(x6)16-1]chia hết cho x4 + x2 +1
Nên .....
x^200+x^100+1=x^100*(x^2+1)+1
x^4+x^2+1=x^2*(x^2+1)+1
mà x^100chia hết cho x^2
x^2+1chia hết cho x^2+1
1 chia hết cho1
suy ra x^100*(x^2+1)+1 chia hết cho x^2*(x^2+1)+1 hay x^200+x^100+1 chia hết cho x^4+x^2+1
\(A=x^{200}+x^{100}+1\)
\(=x^{200}-x^2+x^{100}-x^4+x^4+x^2+1\)
\(=x^2\left(x^{198}-1\right)+x^4\left(x^{96}-1\right)+\left(x^4+x^2+1\right)\)
\(=x^2\left(x^{^6}-1\right).A+x^4\left(x^6-1\right).B+x^4+x^2+1\)
\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)=\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)\)
Vậy \(A⋮\left(x^4+x^2+1\right)\)
x200 = x200 + x198 + x196 - x198 - x196 - x194 + ... + x2 = A(x)(x4 + x2 + 1) + x2
x100 = B(x)(x4 + x2 + 1) + x4
Từ đó ta có:x200 + x100 + 1 = A(x)(x4 + x2 + 1) + x2 + B(x)(x4 + x2 + 1) + x4 + 1
Từ đó ta có ta có điều phải chứng minh
tuyệt, lâu lâu mới gặp cách giải đầy trí tuệ, tôi tisk cho bn alibaba nguyễn
vì x^200 chia hết cho 4 , x^100 chia hết cho x^2 và 1 chia hết cho 1 nên x^200+x^100+1 chia hếtcho x^4+x^2+1
**** bn nhe
Đặt x2=ax2=a. Cần chứng minh: a^100+a^50⋮a2+a+1a100+a50⋮a2+a+1
Sử dụng tính chất quen thuộc: a3m+1+a3n+2=a(a3m−1)+a2(a3n−1)−(a2+a+1)⋮a2+a+1
đề đâu
chứng minh chia hết thì phải