K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

\(1,A⋮B\Leftrightarrow x^3-3x^2-ax+3=\left(x-1\right)\cdot a\left(x\right)\)

Thay \(x=1\)

\(\Leftrightarrow1-3-a+3=0\\ \Leftrightarrow a=1\)

\(2,A⋮B\Leftrightarrow3x^3-16x^2+25x+a=\left(x^2-4x+3\right)\cdot b\left(x\right)\\ \Leftrightarrow3x^3-16x^2+25x+a=\left(x-3\right)\left(x-1\right)\cdot b\left(x\right)\)

Thay \(x=1\)

\(\Leftrightarrow3-16+25+a=0\\ \Leftrightarrow a=-12\)

Thay \(x=3\)

\(\Leftrightarrow3\cdot27-16\cdot9+25\cdot3+a=0\\ \Leftrightarrow81-144+75+a=0\\ \Leftrightarrow12+a=0\Leftrightarrow a=-12\)

Vậy \(a=-12\)

 

A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)

B(x)=1-x^n/1-x

A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x

x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)

=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1

29 tháng 5 2023

bn ơi mk chưa hiểu lời giải của bạn ạ

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1
26 tháng 12 2021

\(=x^3\left(x+2\right)-x\left(x+2\right)\)

\(=\left(x+2\right)\cdot x\cdot\left(x+1\right)\left(x-1\right)\)

Vì đây là tích của bốn số nguyên liên tiếp

nên \(\left(x+2\right)\cdot x\cdot\left(x+1\right)\cdot\left(x-1\right)⋮24\)

11 tháng 3 2019

Ta có

Phần dư của phép chia là R = (a – 1)x + b – A. Để phép chia trên là phép chia hết thì R = 0, Ɐx

ó (a – 1)x + b – a = 0, Ɐx

ó a - 1 = 0 b - a = 0 ó a = 1 b = 1 ó a = b

Đáp án cần chọn là: C

15 tháng 10 2019

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

15 tháng 10 2019

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)

4 tháng 11 2016

Ta có 

x200 = (x200 + x198 + x196) + (- x198 - x196 - x194) + ...+ x2 = (x4 + x2 + 1)A(x) + x2

Tương tự 

x100 = (x4 + x2 + 1)B(x) + x4 

Từ đó ta có

x200 + x100 + 1 =  (x4 + x2 + 1)A(x) + x+ (x4 + x2 + 1)B(x) + x4 + 1 

= (x4 + x2 + 1)C(x) chia hết cho x4 + x2 + 1

3 tháng 11 2016

biến đổi x^200+x^100+1 ra sao nhỉ