K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2018

A={x|x=3n;n\(\in\)N;\(1\le n\le4\)}
B={x|x=(2k)2;k\(\in\)N;\(1\le k\le5\)}
C={x|x=\(\frac{1}{\frac{1}{2}n^3-\frac{5}{2}n^2+7n-3}\);\(n\in N\);\(1\le n\le4\)
}
Cái C tui làm bừa đấy

9 tháng 7 2023

a) 25x² - 16

= (5x)² - 4²

= (5x - 4)(5x + 4)

b) 16a² - 9b²

= (4a)² - (3b)²

= (4a - 3b)(4a + 3b)

c) 8x³ + 1

= (2x)³ + 1³

= (2x + 1)(4x² - 2x + 1)

d) 125x³ + 27y³

= (5x)³ + (3y)³

= (5x + 3y)(25x² - 15xy + 9y²)

e) 8x³ - 125

= (2x)³ - 5³

= (2x - 5)(4x² + 10x + 25)

g) 27x³ - y³

= (3x)³ - y³

= (3x - y)(9x² + 3xy + y²)

9 tháng 7 2023

a) \(25x^2-16=\left(5x-4\right)\left(5x+4\right)\)

b) \(16a^2-9b^2=\left(4a-3b\right)\left(4a+3b\right)\)

c) \(8x^3+1=\left(2x+1\right)\left(4x^2-2x+1\right)\)

d) \(125x^3+27y^3=\left(5x+3y\right)\left(25x^2-15xy+9y^2\right)\)

e) \(8x^3-125=\left(2x-5\right)\left(4x^2-10x+25\right)\)

g) \(27x^3-y^3=\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)

hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)

2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)

hay \(x\in\left\{1;5\right\}\)

3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)

hay \(x\in\left\{-4;3;-3\right\}\)

5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)

\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)

\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)

hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)

14 tháng 2 2022

1.

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)

\(\Leftrightarrow x+3=5x-2\)

\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)

2.

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)

\(\Leftrightarrow x^2+x+1=x^2-2x+16\)

\(\Leftrightarrow3x=15\Leftrightarrow x=5\)

3.

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)

19 tháng 9 2021

Bài 1: 

a) \(a^2-6a+9=\left(a-3\right)^2\)

b) \(\dfrac{1}{4}x^2+2xy^2+4y^4=\left(\dfrac{1}{2}x+2y^2\right)^2\)

Bài 2:

a)  \(\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\)

\(\Leftrightarrow48x=46\Leftrightarrow x=\dfrac{23}{24}\)

b) \(\Leftrightarrow x^2+8x+16-x^2+1=16\)

\(\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)

24 tháng 8 2021

a, \(x^2-6x+9=\left(x-3\right)^2\)

b, \(x^2-12x+36=\left(x-4\right)^2\)

c, \(9x^2-25=\left(3x-5\right)\left(3x+5\right)\)

d, \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)

e, \(x^4-8x^2+16=\left(x^2-4\right)^2=\left[\left(x-2\right)\left(x+2\right)\right]^2\)

f, \(x^4-81=\left(x^2-9\right)\left(x^2+9\right)=\left(x-3\right)\left(x+3\right)\left(x^2+9\right)\)

g, \(\left(4x+5\right)^2-\left(5x+4\right)^2=\left(4x+5-5x-4\right)\left(4x+5+5x+4\right)=9\left(1-x\right)\left(x+1\right)\)

h, \(\left(2x-3\right)^2-2\left(2x-3\right)\left(x+2\right)+\left(-x-2\right)^2\)

\(=\left(2x-3\right)^2-2\left(2x-3\right)\left(x+2\right)+\left(x+2\right)^2\)

\(=\left(2x-3-x-2\right)^2=\left(x-5\right)^2\)

25 tháng 8 2021

a) x2 - 6x + 9 = (x-3)2

b) x2 - 12 + 36 = (x-6)2

c) 9x- 25 = (3x - 25)(3x + 25)

d) x2 - x + 1/4 = (x - 1/2)2

25 tháng 8 2023

a) \(x^2+2x+1=\left(x+1\right)^2\)

b) \(x^2+8x+16=\left(x+4\right)^2\)

c) \(x^2+6x+9=\left(x+3\right)^2\)

d) \(4x^2+4x+1=\left(2x+1\right)^2\)

e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)

f) \(4x^2+12x+9=\left(2x+3\right)^2\)

g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)

h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)

25 tháng 8 2023

a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2

b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2

c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2

d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2

a: \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

c: \(x^3-125=\left(x-5\right)\left(x^2+5x+25\right)\)

\(\dfrac{1}{8}x^3-64=\left(\dfrac{1}{2}x-4\right)\left(\dfrac{1}{4}x^2+2x+16\right)\)

d: \(=\left(2x+5y\right)^3\)

29 tháng 11 2017

19 tháng 8 2019

a) \(x^2-6x+9=\left(x-3\right)^2\)

b) \(x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2\)

c) \(4x^2-\frac{1}{16}=\left(2x-\frac{1}{4}\right)\left(2x+\frac{1}{4}\right)\)

d) \(\left(a+b\right)^2-4=\left(a+b-2\right)\left(a+b+2\right)\)

e) \(\left(a^2+9\right)^2-36a^2=\left(a^2-6a+9\right)\left(a^2+6a+9\right)\)

\(=\left(a-3\right)^2\cdot\left(a+3\right)^2\)

19 tháng 8 2019

Đã trả lời: Câu hỏi của Naryu Wikashi - Toán lớp 8 | Học trực tuyến

19 tháng 8 2019

a. x2 - 6x + 9

= x2 - 2x3 + 32

= (x - 3)2

b. x2 + x + \(\frac{1}{4}\)

= x2 + 2x\(\frac{1}{2}\)\(\left(\frac{1}{2}\right)^2\)

= (x + \(\frac{1}{2}\))2

c. 4x2 - \(\frac{1}{16}\)

= (2x)2 - \(\left(\frac{1}{4}\right)^2\)

= (2x +\(\frac{1}{4}\))(2x - \(\frac{1}{4}\))

d. (a + b)2 - 4

= (a + b)2 - 22

= (a + b + 2)(a + b - 2)

e. (a2 + 9)2 - 36a2

= (a2 + 9)2 - (6a)2

= (a2 + 9 + 6a)(a2 + 9 - 6a)