Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do C thuộc Ox nên tọa độ có dạng: \(C\left(x;0\right)\)
Do trọng tâm G thuộc Oy \(\Rightarrow x_G=0\)
Mà \(x_A+x_B+x_C=3x_G\)
\(\Rightarrow1+\left(-3\right)+x=3.0\)
\(\Rightarrow x=2\)
\(\Rightarrow C\left(2;0\right)\)
Gọi tọa độ \(P\left(0;a\right)\) và \(G\left(b;0\right)\)
Theo công thức trọng tâm:
\(\left\{{}\begin{matrix}x_G=\frac{x_M+x_N+x_P}{3}\\y_G=\frac{y_M+y_N+y_P}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3b=1+5+0\\3.0=-1+\left(-3\right)+a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\a=4\end{matrix}\right.\) \(\Rightarrow P\left(0;4\right)\)
a: \(\left\{{}\begin{matrix}x_G=\dfrac{2+4+2}{3}=\dfrac{8}{3}\\y_G=\dfrac{1+0+3}{3}=\dfrac{4}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_I=\dfrac{2+4}{2}=3\\y_I=\dfrac{1+0}{2}=\dfrac{1}{2}\end{matrix}\right.\)
Lời giải:
Ta có:
\(\left\{\begin{matrix}
\frac{x_A+x_B+x_C}{3}=x_G\\
\frac{y_A+y_B+y_C}{3}=y_G\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x_C=3x_G-x_A-x_B\\
y_C=3y_G-y_A-y_B\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x_C=3.2-(-2)-0=8\\ y_C=3.3-0-4=5\end{matrix}\right.\)
Vậy tọa độ điểm $C$ là $(8,5)$
Do G là trọng tâm tam giác ABC nên tọa độ G:
x G = x A + x B + x C 3 = − 1 + 5 + 0 3 = 4 3 y G = y A + y B + y C 3 = 1 + ( − 3 ) + 2 3 = 0 ⇒ G 4 3 ; 0
Điểm G1 là điểm đối xứng của G qua trục Oy nên G 1 − 4 3 ; 0
Đáp án D
Do C thuộc trục Oy nên tọa độ có dạng \(C\left(0;c\right)\)
Áp dụng công thức trọng tâm:
\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{4}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{c-2}{3}\end{matrix}\right.\)
Do G thuộc Ox \(\Rightarrow y_G=0\Rightarrow\dfrac{c-2}{3}=0\Rightarrow c=2\)
\(\Rightarrow C\left(0;2\right)\)
Đáp án A