K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

Do G là trọng tâm tam giác ABC nên tọa độ G:

x G = x A + ​ x B + ​ x C 3 = − 1 + ​ 5 + ​ 0 3 = 4 3 y G = y A + ​ y B + ​ y C 3 = ​ 1 + ​ ( − 3 ) + 2 3 = 0 ⇒ G 4 3 ;    0

Điểm G1 là điểm đối xứng của G qua trục Oy nên  G 1 ​   − 4 3 ;    0

Đáp án D

 

26 tháng 10 2021

\(a,\Rightarrow C,A,D\) \(thẳng\) \(hàng\Rightarrow\overrightarrow{CA}+\overrightarrow{CD}=\overrightarrow{0}\Leftrightarrow\overrightarrow{CA}=\overrightarrow{DC}\)

\(D\left(x;y\right)\Rightarrow\overrightarrow{CA}=\overrightarrow{DC}\Leftrightarrow\left\{{}\begin{matrix}-1-x=2\\-2-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)\(\Rightarrow D\left(-3;-2\right)\)

\(b,E\left(xo;yo\right)\Rightarrow\overrightarrow{AE}=\overrightarrow{BC}\)\(\Leftrightarrow\left\{{}\begin{matrix}xo-1=-3\\yo+2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}xo=-2\\yo=-7\end{matrix}\right.\)\(\Rightarrow E\left(-2;-7\right)\)

\(c,\Rightarrow G\left(xG;yG\right)\Rightarrow\left\{{}\begin{matrix}xG=\dfrac{1+2-1}{3}=\dfrac{2}{3}\\yG=\dfrac{-2+3-2}{3}=-\dfrac{1}{3}\end{matrix}\right.\)\(\Rightarrow G\left(\dfrac{2}{3};-\dfrac{1}{3}\right)\)

DD
1 tháng 1 2023

b) Điểm \(M\) thuộc trục tung nên tọa độ điểm \(M\) có dạng \(M\left(0;m\right)\)

\(N\) là trung điểm của \(AB\) suy ra \(N\left(1;4\right)\).

\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|2\overrightarrow{MN}\right|=2\sqrt{1^2+\left(m-4\right)^2}\ge2\sqrt{1}=2\)

Dấu \(=\) xảy ra khi \(m-4=0\Leftrightarrow m=4\).

Vậy \(M\left(0;4\right)\)

a) Trọng tâm \(G\) của tam giác \(ABC\)

\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{4+2-2}{3}=\dfrac{4}{3},y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{3-1+5}{3}=\dfrac{7}{3}\).

Vậy \(G\left(\dfrac{4}{3};\dfrac{7}{3}\right)\) là trọng tâm tam giác \(ABC\).

 

3 tháng 8 2016

gọi K1 là giao điểm của AK với BC. Đầu tiên e chứng minh I là trực tâm của Tam Giác AK1B.

chứng minh tam giác AK1B cân tại K1, rồi suy ra K1M vuông góc vowis AB, suy ra I là trực tâm. rồi e làm như bình thường

6 tháng 12 2018

*  Do đỉnh C thuộc trục Ox nên C(a;0). 

G thuộc trục Oy nên G(0; b).

* G là trọng tâm tam giác ABC  nên:

x G = x A + ​ x B + ​ x C 3 y G = y A + ​ y B + ​ y C 3 ⇒ 0 = − 2 + ​ 6 + ​ a 3 b = 2 + ​ ( − 4 ) + ​ 0 3 ⇔ a = − 4 b = − 2 3

Tọa độ trọng tâm tam giác ABC là  G ​ 0 ;    − 2 3

Đáp án B

NV
3 tháng 1 2022

Do C thuộc Ox nên tọa độ có dạng: \(C\left(x;0\right)\)

Do trọng tâm G thuộc Oy \(\Rightarrow x_G=0\)

Mà \(x_A+x_B+x_C=3x_G\)

\(\Rightarrow1+\left(-3\right)+x=3.0\)

\(\Rightarrow x=2\)

\(\Rightarrow C\left(2;0\right)\)