K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó I(1; 3; 4)

Phương trình mặt phẳng ( α ) qua I và vuông góc với OA là: x – 1 = 0, ( α ) cắt OA tại K(1; 0; 0)

Khoảng cách từ I đến OA là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

23 tháng 7 2017

7 tháng 8 2017

Đáp án B

7 tháng 4 2017

Gọi (Q) là mặt phẳng đi qua A và song song với (P) thì phương trình của (Q) là (x + 2) + 2(y + 1) - (z - 1) = 0 hay x + 2y - z + 5 = 0. Gọi H là hình chiếu vuông góc của B lên (Q). Giả sử Δ là đường thẳng qua A và song song với (P), I là chân đường vuông góc kẻ từ B đến ∆ . Khi đó I ∈ (Q) và BH ≤ BI.

Do đó AH chính là đường phải tìm.

Gọi d là đường thẳng đi qua B và vuông góc với (Q).

Phương trình của d là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Để tìm giao điểm H = d ∩ (Q) ta thay phương trình của d vào phương trình của (Q), ta có:

6 + t + 2(6 + 2t) - (5 - t) + 5 = 0 ⇒ t = -3.

Do đó H = (3; 0; 8)

Phương trình đường thẳng AH là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

6 tháng 5 2018

Đáp án C

Gọi H là hình chiếu của M trên (P) => MH  là khoảng cách từ M đến mặt phẳng (P). Đường thẳng D có vectơ chỉ phương  u → =(2;1;3) mặt phẳng (P) có vectơ pháp tuyến   n → =(1;1;-2)

Khi đó:

Tam giác MHA vuông tại H  

4 tháng 7 2018

Chọn B

21 tháng 12 2019

Đáp án D

Gọi H là hình chiếu của A trên đường thẳng d.

Ta có: AH ≤ AM nên khoảng cách từ A đến đường thẳng d nhỏ nhất khi AH trùng với mới AM, khi đó H trùng với M và AM vuông góc d. Mặt phẳng (P) có vecto pháp tuyến n p → (1; 1; 1) . AM → (0; -2; -1) Đường thẳng d nhận vecto [ AM → ; n p → ] làm vecto chỉ phương. Phương trình tham số của d:

16 tháng 12 2017

Đáp án C.

22 tháng 5 2017

Ôn tập chương III

21 tháng 6 2017

Chọn A

Vì đường thẳng Δ đi qua điểm A (0;0;1) và vuông góc với mặt phẳng Ozx thì Δ song song với trục Oy và nằm trong mặt phẳng Oyz. Dễ thấy OA là đường vuông góc chung của Δ và Ox

Xét mặt phẳng (α) đi qua I (0;0;1/2) và là mặt phẳng trung trực của OA.

Khi đó Δ // (α), Ox // (α) và mọi điểm nằm trên (α) có khoảng cách đến Δ và Ox là bằng nhau.

Vậy tập hợp điểm C là các điểm cách đều đường thẳng Δ và trục Ox là mặt phẳng (α). Mặt phẳng (α) đi qua I (0;0;1/2) có véc tơ pháp tuyến là  nên có phương trình:

Đoạn BC nhỏ nhất khi C là hình chiếu vuông góc của B lên (α). Do đó khoảng cách nhỏ nhất giữa điểm B (0;4;0) tới điểm C chính là khoảng cách từ B (0;4;0) đến mặt phẳng (α):