Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Gọi (Q) là mặt phẳng đi qua M (2;2; -3) và song song với mặt phẳng (P).
Suy ra (Q):2x+y+z-3=0.
Do Δ // (P) nên Δ ⊂ (Q)).
D (N, Δ) đạt giá trị nhỏ nhất ó Δ đi qua N', với N' là hình chiếu của N lên (Q).
Gọi d là đường thẳng đi qua N và vuông góc (P),
Ta có N’ ∈ d => N' (-4+2t;2+t;1+t); N’ ∈ (Q) => t = 4/3
cùng phương
Do |a|, |b| nguyên tố cùng nhau nên chọn
Vậy |a| + |b| + |c| = 15.
Chọn D
Xét hàm số:
Do đó d (B; d) nhỏ nhất khi f(t) đạt giá trị nhỏ nhất bằng 27 tại t = 2/3. Suy ra . Chọn một vectơ chỉ phương của đường thẳng d là
Vậy phương trình đường thẳng
Chọn C
Gọi giao điểm của Δ và d là B nên ta có: B (3+t;3+3t;2t)
Vì đường thẳng Δ song song với mặt phẳng (α) nên:
Phương trình đường thẳng Δ đi qua A và nhận
Chọn D
Mặt phẳng (P) vuông góc với đường thẳng d nên (P) nhận vecto chỉ phương của d là một vecto pháp tuyến. Ta có phương trình mặt phẳng (P) là
Chọn A
Cách 1: Ta có: B ∈ Oxy và B ∈ (α) nên B (a ; 2 – 2a ; 0).
đi qua M (-1 ; -2 ; -3) và có một véctơ chỉ phương là
Ta có: d ⊂ (α) nên d và Δ song song với nhau và cùng nằm trong mặt phẳng (α).
Gọi C = d ∩ (Oxy) nên
Gọi d’ = (α) ∩ (Oxy), suy ra d’ thỏa hệ
Do đó, d’ qua và có VTCP
Gọi φ = (Δ, d’) = (d, d’)
Gọi H là hình chiếu của C lên Δ. Ta có CH = 3 và
Cách 2: Ta có: đi qua M (-1 ; -2 ; -3) và có một VTCP là
Ta có: B = Δ ∩ (Oxy), Δ ⊂ (α) nên B ∈ (Oxy) ∩ (α) => B (a; 2 – a; 0)
Ta có: Δ // d và d (Δ, d) = 3 nên
Chọn A
Vì đường thẳng Δ đi qua điểm A (0;0;1) và vuông góc với mặt phẳng Ozx thì Δ song song với trục Oy và nằm trong mặt phẳng Oyz. Dễ thấy OA là đường vuông góc chung của Δ và Ox
Xét mặt phẳng (α) đi qua I (0;0;1/2) và là mặt phẳng trung trực của OA.
Khi đó Δ // (α), Ox // (α) và mọi điểm nằm trên (α) có khoảng cách đến Δ và Ox là bằng nhau.
Vậy tập hợp điểm C là các điểm cách đều đường thẳng Δ và trục Ox là mặt phẳng (α). Mặt phẳng (α) đi qua I (0;0;1/2) có véc tơ pháp tuyến là nên có phương trình:
Đoạn BC nhỏ nhất khi C là hình chiếu vuông góc của B lên (α). Do đó khoảng cách nhỏ nhất giữa điểm B (0;4;0) tới điểm C chính là khoảng cách từ B (0;4;0) đến mặt phẳng (α):