Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do vế trái luôn luôn lớn hơn hoặc =0
=> vế phải cx luôn luôn lớn hơn hoặc =0
=> bỏ giá trị tuyệt đối =100x
có 99x + ........... = 100x
trừ là ra nha bn
ta có:
|x+1/1.2|+|x+1/2.3|+...+|x+1/99.100|=100x
=>|x+1/1.2+x+1/2.3+...+x+1/99.100|=100x
<=>|(x+x+x+...+x)+1/1.2+1/2.3+....1/99.100|=100x
<=>|x.99+1-1/2+1/2-1/3+1/3-1/4+.....+1/99-1/100|=100x
<=>|x.99+1-1/100|=100x
<=>|99x+99/100|=100x
Có 2 trường hợp
TH1
99x+99/100=100x
=>100x-99x=99/100
<=>x=99/100
=>x=99/100
TH2:
99x+99/100=-100x
-100x-99x=99/100
<=>-199x=99/100
<=>x=99/-19900( loại vì |99x+99/100| là số dương nên 100x là số dương mà x là sô âm nên 100x là số âm)
\(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{99.101}\right)\)
\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}....\dfrac{100^2}{99.101}\)
\(=\dfrac{2.3.4...100}{1.2.3.4...99}.\dfrac{2.3.4...100}{3.4.5....101}\)
\(=\dfrac{100}{1}.\dfrac{2}{101}\)
\(=\dfrac{200}{101}\)
\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2021.2023}\right)\)
\(=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{4088484}{2021.2023}\)
\(=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2022.2022}{2021.2023}\)
\(=\dfrac{2.2022}{1.2023}\)
Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)
$\Rightarrow -11x\geq 0$
$\Rightarrow x\leq 0$
Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$
PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$
$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$
$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$
$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$
$\frac{1}{2}(1-\frac{1}{21})=-x$
$\frac{10}{21}=-x$
$\Rightarrow x=\frac{-10}{21}$
Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)
$\Rightarrow -11x\geq 0$
$\Rightarrow x\leq 0$
Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$
PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$
$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$
$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$
$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$
$\frac{1}{2}(1-\frac{1}{21})=-x$
$\frac{10}{21}=-x$
$\Rightarrow x=\frac{-10}{21}$
Vì \(\left|x+\dfrac{1}{1\cdot2}\right|+\left|x+\dfrac{1}{2\cdot3}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|\ge0\forall x\)
\(\Rightarrow100x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\dfrac{1}{1\cdot2}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|=x+\dfrac{1}{1\cdot2}+...+x+\dfrac{1}{99\cdot100}\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1\cdot2}+...+\dfrac{1}{99\cdot100}\right)=100x\)
\(\Rightarrow99x+\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)=100x\)
\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}=x\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=x\)
\(\Rightarrow x=1-\dfrac{1}{100}=\dfrac{99}{100}\)