Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{99.101}\right)\)
\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}....\dfrac{100^2}{99.101}\)
\(=\dfrac{2.3.4...100}{1.2.3.4...99}.\dfrac{2.3.4...100}{3.4.5....101}\)
\(=\dfrac{100}{1}.\dfrac{2}{101}\)
\(=\dfrac{200}{101}\)
Vì \(\left|x+\dfrac{1}{1\cdot2}\right|+\left|x+\dfrac{1}{2\cdot3}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|\ge0\forall x\)
\(\Rightarrow100x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\dfrac{1}{1\cdot2}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|=x+\dfrac{1}{1\cdot2}+...+x+\dfrac{1}{99\cdot100}\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1\cdot2}+...+\dfrac{1}{99\cdot100}\right)=100x\)
\(\Rightarrow99x+\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)=100x\)
\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}=x\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=x\)
\(\Rightarrow x=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Bài 1:
a: \(A=\left(-\dfrac{1}{5}\right)^{33}:\left(-\dfrac{1}{5}\right)^{32}=\dfrac{-1}{5}\)
c: \(C=\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(A=\dfrac{2}{2}.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(A=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{2n+1}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{4n+2}< \dfrac{1}{2}\left(dpcm\right)\)
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
Bài 2:
a: =>x^2=60
=>\(x=\pm2\sqrt{15}\)
b: =>2^2x+3=2^3x
=>3x=2x+3
=>x=3
c: \(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}\cdot\dfrac{1}{2}=1\)
\(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}=2\)
=>1/2x-2=4
=>1/2x=6
=>x=12
\(=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2021}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{2021}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-2020}{2021}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2022}{2021}\)
\(=\dfrac{1}{2021}\cdot\dfrac{2022}{2}=\dfrac{1011}{2021}\)
\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2021.2023}\right)\)
\(=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{4088484}{2021.2023}\)
\(=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2022.2022}{2021.2023}\)
\(=\dfrac{2.2022}{1.2023}\)