K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.

Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.

Bước 3. Đối chiếu với điều kiện và kết luận bài toán.

xem tr sách của anh

12 tháng 11 2021

Bài 1:

PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m+2\right)^2-4\cdot2\ge0\Leftrightarrow m^2+4m-8\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2-2\sqrt{3}\\m\ge-2+2\sqrt{3}\end{matrix}\right.\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2\end{matrix}\right.\)

Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=9x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=18\\ \Leftrightarrow2\left(m+2\right)^2-8=18\\ \Leftrightarrow2m^2+8m+8-8=18\\ \Leftrightarrow m^2+4m-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{13}\\m=-2-\sqrt{13}\end{matrix}\right.\left(tm\right)\)

12 tháng 11 2021

Để PT có 2 nghiệm \(\Leftrightarrow\Delta=\left[2\left(m+2\right)\right]^2-4\left(m^2+4\right)\ge0\)

\(\Leftrightarrow4m^2+16m+16-4m^2-16\ge0\\ \Leftrightarrow m\ge0\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m^2+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\left(1\right)\\x_1x_2=m^2+4\left(2\right)\\x_1+2x_2=7\left(3\right)\end{matrix}\right.\)

\(\left(3\right)-\left(1\right)=x_2=3-2m\)

Thay vào \(\left(1\right)\Leftrightarrow x_1=2\left(m+2\right)-x_2=2m+4-3+2m=4m+1\)

Thay vào \(\left(2\right)\Leftrightarrow\left(3-2m\right)\left(4m+1\right)=m^2+4\)

\(\Leftrightarrow10m+3-8m^2=m^2+4\\ \Leftrightarrow9m^2-10m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{9}\end{matrix}\right.\left(tm\right)\)

 

27 tháng 5 2021

Để pt có hai nghiệm <=> \(\Delta\ge0\)\(\Leftrightarrow16m^2-64m+48\ge0\)

\(\Leftrightarrow m\in R\backslash\left(1;3\right)\)

Có \(x_1+x_2-2x_1x_2< 8\)

\(\Leftrightarrow2\left(2m-3\right)-2\left(4m-3\right)< 8\)

\(\Leftrightarrow-4m-8< 0\)

\(\Leftrightarrow m>-2\)

Kết hợp với đk => \(m\in\left(-2;1\right)\cup\left(3;+\infty\right)\cup\left\{1;3\right\}\)

4 tháng 7 2020

Để phương trình có 2 nghiệm phân biệt :

\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)

\(< =>4+4m>0\)

\(< =>4m>-4\)

\(< =>m>-1\)

11 tháng 2 2017

Phương trình có 2 nghiệm x 1 ,   x 2  thỏa mãn x 1 + x 2 = 13 4

⇔ a ≠ 0 Δ ≥ 0 − b a = 13 4 ⇔ m ≠ 0 m 2 − 3 3 − 4 m 2 ≥ 0 − m 2 − 3 m = 13 4

⇔ m ≠ 0 m 2 − 3 − 2 m m 2 − 3 + 2 m ≥ 0 4 m 2 + 13 m − 12 = 0

⇔ m ≠ 0 m + 1 m − 3 m − 1 m + 3 ≥ 0 m = 3 4 ; m = − 4

⇔ m ≠ 0 m ∈ − ∞ ; − 3 ∪ − 1 ; 1 ∪ 3 ; + ∞ m = 3 4 ; m = − 4 ⇔ m = 3 4 m = − 4

Vậy tổng bình phương các giá trị của m là: 265 16

Đáp án cần chọn là: A

4 tháng 9 2021

hehe 1000000% dễễễễ

10 tháng 8 2018

a) Với m = 1 phương trình trở thành:

x 2  + 4x + 4 = 0 ⇔ (x + 2 ) 2  = 0 ⇔ x = -2

Vậy x = -2

b) Ta có: Δ' = m 2  - 5m + 4

Phương trình có hai nghiệm phân biệt

⇔ Δ' > 0 ⇔ m 2  - 5m + 4 > 0 Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Do x1 < x2 < 1

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

NV
11 tháng 9 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)

8 tháng 3 2022

\(mx^2+\left(m-1\right)x+3-4m=0\left(1\right)\)

\(m=0\Rightarrow\)\(\left(1\right)\Leftrightarrow-x+3=0\Leftrightarrow x=3\left(ktm\right)\)

\(m\ne0\Rightarrow x1< 2< x2\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-2\right)\left(x2-2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2-4m\left(3-4m\right)>0\\x1x2-2\left(x1+x2\right)+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{7+4\sqrt{2}}{17}\\m< \dfrac{7-4\sqrt{2}}{17}\end{matrix}\right.\\\dfrac{3-4m}{m}-2.\left(\dfrac{1-m}{m}\right)+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{7+4\sqrt{2}}{17}\\m< \dfrac{7-4\sqrt{2}}{17}\end{matrix}\right.\\-\dfrac{1}{2}< m< 0\\\end{matrix}\right.\)\(\Rightarrow m\in\phi\)

\(\text{Δ}=2^2-4\cdot1\cdot m=4-4m\)

Để phương trình có hai nghiệm thì Δ>=0

=>-4m+4>=0

=>-4m>=-4

=>m<=1(1)

Theo Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

\(\dfrac{x_1^2-3x_1+m}{x_2}+\dfrac{x_2^2-3x_2+m}{x_1}< =2\)

=>\(\dfrac{x_1^3+x_2^3-3\left(x_1^2+x_2^2\right)+m\left(x_1+x_2\right)}{x_1x_2}< =2\)

=>\(\dfrac{\left(x_1+x_2\right)^3-3x_1x_2-3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+m\left(x_1+x_2\right)}{x_1x_2}< =2\)

=>\(\dfrac{\left(-2\right)^3-3\cdot m-3\left[\left(-2\right)^2-2m\right]+m\cdot\left(-2\right)}{m}< =2\)

=>\(\dfrac{-8-3m-3\left(4-2m\right)-2m}{m}-2< =0\)

=>\(\dfrac{-5m-8-12+6m}{m}-2< =0\)

=>\(\dfrac{m-20-2m}{m}< =0\)

=>\(\dfrac{-m-20}{m}< =0\)

=>\(\dfrac{m+20}{m}>=0\)

=>\(\left[{}\begin{matrix}m>0\\m< =-20\end{matrix}\right.\)

Kết hợp (1), ta được: \(\left[{}\begin{matrix}0< m< =1\\m< =-20\end{matrix}\right.\)