K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

a) Với m = 1 phương trình trở thành:

x 2  + 4x + 4 = 0 ⇔ (x + 2 ) 2  = 0 ⇔ x = -2

Vậy x = -2

b) Ta có: Δ' = m 2  - 5m + 4

Phương trình có hai nghiệm phân biệt

⇔ Δ' > 0 ⇔ m 2  - 5m + 4 > 0 Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Do x1 < x2 < 1

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

NV
11 tháng 9 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)

11 tháng 2 2017

Phương trình có 2 nghiệm x 1 ,   x 2  thỏa mãn x 1 + x 2 = 13 4

⇔ a ≠ 0 Δ ≥ 0 − b a = 13 4 ⇔ m ≠ 0 m 2 − 3 3 − 4 m 2 ≥ 0 − m 2 − 3 m = 13 4

⇔ m ≠ 0 m 2 − 3 − 2 m m 2 − 3 + 2 m ≥ 0 4 m 2 + 13 m − 12 = 0

⇔ m ≠ 0 m + 1 m − 3 m − 1 m + 3 ≥ 0 m = 3 4 ; m = − 4

⇔ m ≠ 0 m ∈ − ∞ ; − 3 ∪ − 1 ; 1 ∪ 3 ; + ∞ m = 3 4 ; m = − 4 ⇔ m = 3 4 m = − 4

Vậy tổng bình phương các giá trị của m là: 265 16

Đáp án cần chọn là: A

4 tháng 9 2021

hehe 1000000% dễễễễ

NV
30 tháng 12 2020

\(\Delta=\left(m-1\right)^2-4\left(m+3\right)=m^2-6m-11>0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+3\end{matrix}\right.\)

Ta có:

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m-1\right)^2-2\left(m+3\right)=m^2-4m-5\)

Biểu thức này ko tồn tại cả min lẫn max với điều kiện m từ (1)

a: Δ=(2m-1)^2-4(m-1)

=4m^2-4m+1-4m+4

=4m^2-8m+5

=4m^2-8m+4+1=(2m-2)^2+1>=1>0 với mọi m

=>PT luôn có 2 nghiệm với mọi m

b: x1^3+x2^3=2m^2-m

=>(x1+x2)^3-3x1x2(x1+x2)=2m^2-m

=>(2m-1)^3-3(m-1)(2m-1)=2m^2-m

=>8m^3-12m^2+6m-1-3(2m^2-3m+1)-2m^2+m=0

=>8m^3-14m^2+7m-1-6m^2+9m-3=0

=>8m^3-20m^2+16m-4=0

=>m=1/2 hoặc m=1

5 tháng 12 2018

Đáp án: C

Ta có: \(\Delta=4m^2-8m+1\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\) \(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{2-\sqrt{3}}{2}\\x>\dfrac{2+\sqrt{3}}{2}\end{matrix}\right.\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=1-2m\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

Ta lập được HPT \(\left\{{}\begin{matrix}x_1+x_2=1-2m\\2x_1=x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1=1-2m\\x_2=2x_1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1-2m}{3}\\x_2=\dfrac{2-4m}{3}\end{matrix}\right.\)

Kết hợp với (2), ta được:

\(\dfrac{8m^2-12m+2}{9}=m\) \(\Leftrightarrow...\) 

 

 

 

 

AH
Akai Haruma
Giáo viên
18 tháng 1

Lời giải:

Để pt có 2 nghiệm pb thì: $\Delta'=4-(3-m)>0$

$\Leftrightarrow m+1>0\Leftrightarrow m>-1(*)$
Khi đó, áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:

$x_1+x_2=4$

$x_1x_2=3-m$

Để $0\leq x_1< x_2<3$ thì:

\(x_2,x_1\geq 0\Leftrightarrow \left\{\begin{matrix}\ x_1x_2=3-m\geq 0\\ x_1+x_2=4\geq 0\end{matrix}\right.\Leftrightarrow m\leq 3(**)\)

\(x_2,x_2<3\Leftrightarrow \left\{\begin{matrix} x_1+x_2<6\\ (x_1-3)(x_2-3)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4<6\\ x_1x_2-3(x_1+x_2)+9>0\end{matrix}\right.\)

\(\Leftrightarrow 3-m-12+9>0\Leftrightarrow m<0(***)\)

Từ $(*); (**); (***)\Rightarrow -1< m< 0$