K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)

c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)

\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)

d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)

\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)

e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)

\(minE=-20\Leftrightarrow x=-3\)

f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)

12 tháng 9 2021

\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)

Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

Mấy câu còn lại làm tương tự nhé em^^

25 tháng 10 2019

\(A=x^2+4x+100\)

\(A=x^2+2.x.2+2^2+96\)

\(A=\left(x+2\right)^2+96\)

           \(\left(x+2\right)^2+96\le0\)

           \(\left(x+2\right)^2+96\le96\)

    \(\Leftrightarrow A\le96\)

\(A_{min}\Leftrightarrow A=10\)

Dấu "=" xảy ra : \(\left(x+2\right)^20\)

                             \(x+2=0\)

                             \(x=-2\)

     

25 tháng 10 2019

Thay hộ mik cái dấu \(\le\)thành dấu \(\ge\)vs ak

25 tháng 10 2019

Bài 1:Tìm giá trị nhỏ nhất

A= x2+4x+100

A= (x\(^2\)+4x+4)+96

A= (x\(^2\)+2.x.2+2\(^2\))+96

A= (x+2)\(^2\)+96

Vì (x+2)\(^2\)0 x

(x+2)\(^2\)+96 ≥ 96 x

Vậy min A = 96 ⇔ x+2=0

⇔ x = -2

25 tháng 10 2019

B1 có bạn làm rồi

B2, B=-2.(x\(^2\)-3x+2)

=-2.(x\(^2\)-2.\(\frac{3}{2}\)x+\(\frac{9}{4}\)+2-\(\frac{9}{4}\))

=-2.[(x-\(\frac{3}{2}\))\(^2\)-\(\frac{1}{4}\)]

=-2.(x-\(\frac{3}{2}\))\(^2\)+\(\frac{1}{2}\)

Có -2.(x-\(\frac{3}{2}\))\(^2\)≤0∀x

⇒-2.(x-\(\frac{3}{2}\))\(^2\)+\(\frac{1}{2}\)\(\frac{1}{2}\)∀x

Dấu = xảy ra⇔x=\(\frac{3}{2}\)

GTLN của B=\(\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
24 tháng 9 2020

Bài 1:

a) $9x^2-2x-1=(3x)^2-2.3x.\frac{1}{3}+(\frac{1}{3})^2-\frac{10}{9}$

$=(3x-\frac{1}{3})^2-\frac{10}{9}$

$\geq 0-\frac{10}{9}=\frac{-10}{9}$

Vậy GTNN của biểu thức là $\frac{-10}{9}$. Giá trị này đạt tại $3x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{9}$

b)

$(2x-5)(x-1)=2x^2-7x+5=2(x^2-\frac{7}{2}x)+5$

$=2[x^2-2.\frac{7}{4}x+(\frac{7}{4})^2]-\frac{9}{8}$

$=2(x-\frac{7}{4})^2-\frac{9}{8}$

$\geq 2.0-\frac{9}{8}=-\frac{9}{8}$

Vậy GTNN của biểu thức là $\frac{-9}{8}$ tại $x=\frac{7}{4}$

24 tháng 9 2020

Giúp em bài bất đẳng thức với ạ

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

21 tháng 10 2021

a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)

20 tháng 7 2017

\(a.2x^3+6x=2x\left(x^2+3\right)\)

\(=2x\left(x^2+3\right)-2x\left(x^2+3\right)\)

\(=\left(x^2+3\right)\left(2x-2x\right)\)

\(b.5x\left(x-2\right)-3x^2\left(x-2\right)\)

\(=\left(x-2\right)\left(5x-3x^2\right)\)

\(c.3x\left(x-5y\right)-2y\left(5y-x\right)\)

\(=3x\left(x-5y\right)+2\left(x-5y\right)\)

\(=\left(x-5y\right)\left(3x+2\right)\)

\(d.y^2\left(x^2+y\right)-x^3-xy\)

\(=y^2\left(x^2+y\right)-x\left(x^2+y\right)\)

\(=\left(x^2+y\right)\left(y^2-x\right)\)

e. Cái bài này ghi lại đàng hoàng xíu nha t k hỉu

\(f.3x^2\left(y^2-2x\right)-15x\left(2x-y^2\right)\)

\(=3x^2\left(y^2-2x\right)+15x\left(y^2-2x\right)\)

\(=\left(y^2-2x\right)\left(3x^2+15x\right)\)