K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. A=x2-3x+5=x2-1.5x-1.5x+2.25+2.75=x(x-1.5)-1.5(x-1.5)+2.75=(x-1.5)2+2.75

ta có (x-1.5)2 > hoặc = 0 với mọi x . Suy ra (x-1.5)2 +2.75 > hoặc = 2.75  với mọi x.

Dấu "=" xảy ra khi x-1.5=0 suy ra x=1.5

Vậy Amin=2.75 khi x=1.5

AH
Akai Haruma
Giáo viên
24 tháng 9 2020

Bài 1:

a) $9x^2-2x-1=(3x)^2-2.3x.\frac{1}{3}+(\frac{1}{3})^2-\frac{10}{9}$

$=(3x-\frac{1}{3})^2-\frac{10}{9}$

$\geq 0-\frac{10}{9}=\frac{-10}{9}$

Vậy GTNN của biểu thức là $\frac{-10}{9}$. Giá trị này đạt tại $3x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{9}$

b)

$(2x-5)(x-1)=2x^2-7x+5=2(x^2-\frac{7}{2}x)+5$

$=2[x^2-2.\frac{7}{4}x+(\frac{7}{4})^2]-\frac{9}{8}$

$=2(x-\frac{7}{4})^2-\frac{9}{8}$

$\geq 2.0-\frac{9}{8}=-\frac{9}{8}$

Vậy GTNN của biểu thức là $\frac{-9}{8}$ tại $x=\frac{7}{4}$

24 tháng 9 2020

Giúp em bài bất đẳng thức với ạ

5 tháng 7 2016

\(A=x^2-4xy+5y^2-6y+20=x^2-2.2xy+4y^2+y^2-2.3y+9-9+20=\left(x-2y\right)^2+\left(x-3\right)^2+11\ge11\)

\(\Rightarrow A_{min}=\frac{7}{4}\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2y\\y=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2.3=6\\y=3\end{cases}}}\)

2 bài sau tương tự nếu ko biết nhna81 tin mình mình làm cho

T I C K cho mình nha mình cảm ơn

13 tháng 1 2015

1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)

b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)

19 tháng 7 2016

\(A=x^2-6x+11=x^2-2.x.3+3^2+2\)

\(A=\left(x-3\right)^2+2\)

\(\left(x-3\right)^2\ge0\)với mọi \(x\in R\)

nên \(\left(x-3\right)^2+2\ge2\)với mọi x\(x\in R\)

Vậy \(Min_A=2\)khi đó \(x=3\)

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

14 tháng 8 2018

Bài 1 :

Câu a : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)

Câu b : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Vậy \(GTNN\) của \(A\)\(\dfrac{11}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)

14 tháng 8 2018

Bài 2 :

Câu a : \(x^2-6x+y^2-4y+13=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)

Do : \(\left(x-3\right)^2\ge0\) and \(\left(y-2\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy \(x=3\) and \(y=2\)

Câu b : \(4x^2-4x+y^2+6y+10=0\)

\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(y+3\right)^2=0\)

Because the : \(\left(2x-1\right)^2\ge0\) and \(\left(y+3\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{2}\)\(y=-3\)

7 tháng 7 2017

1,A=(x2-6x+9)+2

=(x-3)2+2

ta thấy (x-3)2>=0 với mọi x

=>(x-3)2+2>=2 với mọi x

hay A>=2

dấu "="xảy ra x-3=0<=>x=3

vậy MinA=2 khi x=3

ý b sai đầu bài bạn nhé

C=-(x2-5x)

=-(x2-5x+25/4)+25/4

=-(x-5/2)2+25/4

ta thấy -(x-5/2)2<=0 với mọi x

=>-(x-5/2)2+25/4 <=25/4 với mọi x

hay C<=25/4

dấu "=" xảy ra khi x-5/2=0<=>x=5/2

vậy MaxC=25/4 khi x=5/2

k mk nha

7 tháng 7 2017

Ta có : A = x2 - 6x + 11

<=> A = x2 - 6x + 9 + 2 

<=> A = (x - 3)2 + 2

Mà (x - 3)2 \(\ge0\forall x\)

Nên A =  (x - 3)2 + 2 \(\ge2\forall x\)

Vậy Amin = 2 , dấu "=" xảy ra khi và chỉ khi x = 3