Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9x2+6x+25= (3x)2+2.3x.1+1-1+25
= (3x+1)2+24
Vì (3x+1)2 luôn > hoặc = 0
Nên (3x+1)2+24 luôn > hoặc =24
Vậy GTNN của 9x2+6x+25 bằng 24 khi (3x+1)2=0
<=> x= \(\frac{-1}{3}\)
Câu GTLN bạn làm tương tự câu tìm giá trị nhỏ nhất khác nhau một chút là tìm GTLN thì đặt dấu - ra ngoài
a) Ta có: x2 + 4x +5 = ( x2 + 4x + 4 ) +1 = (x+2)2 + 1 >= 1 >0 với mọi x
b) Ta có : 4x2 - 4x +2 = ( 4x2 - 4x +1 ) + 1 = (2x+1)2 > 0 với mọi x
c) Ta có : x2 - 3x +4 = [x2 - 2.(3/2)x + (9/4) ]+ (7/4) = ( x - 3/2 )2 + 7/4 >0 với mọi x
mấy câu sau lm tương tự: sử dụng hằng đẳng thức tách thành dạng một bình phương cộng vs 1 số
a) x2 + 4x + 5 = x2 + 2 . 2x + 22 + 1 = (x + 2)2 + 1\(\ge\)1 > 0
b) 4x2 - 4x + 2 = (2x)2 - 2 . 2x + 1 + 1 = (2x - 1)2 + 1\(\ge\)1 > 0
c) x2 - 3x + 4 = x2 - 2 . 1,5x + 1,52 + 1,75 = (x - 1,5)2 + 1,75 \(\ge\)1,75 > 0
d) x2 - x + 1 = x2 + 2 . 0,5x + 0,52 + 0,75 = (x + 0,5)2 + 0,75\(\ge\)0,75 > 0
e) x2 - 5x + 7 = x2 - 2 . 2,5x + 2,52 + 0,75 = (x - 2,5)2 + 0,75\(\ge\)0,75 > 0
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
\(A=x^2-4xy+5y^2-6y+20=x^2-2.2xy+4y^2+y^2-2.3y+9-9+20=\left(x-2y\right)^2+\left(x-3\right)^2+11\ge11\)
\(\Rightarrow A_{min}=\frac{7}{4}\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2y\\y=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2.3=6\\y=3\end{cases}}}\)
2 bài sau tương tự nếu ko biết nhna81 tin mình mình làm cho
T I C K cho mình nha mình cảm ơn
1. Tìm GTNN:
\(5x^2+y^2+z^2-4x-2xy-z-1=4x^2-4x+1+x^2-2xy+y^2+z^2-z-1-1\)
\(=\left(2x-1\right)^2+\left(x-y\right)^2+z^2-2\times z\times\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-2\)
\(=\left(2x-1\right)^2+\left(x-y\right)^2+\left(z-\frac{1}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
GTNN của biểu thức là -9/4 <=> x=y=z=1/2
Bài 1:Tìm giá trị nhỏ nhất
A= x2+4x+100
A= (x\(^2\)+4x+4)+96
A= (x\(^2\)+2.x.2+2\(^2\))+96
A= (x+2)\(^2\)+96
Vì (x+2)\(^2\) ≥0 ∀ x
⇒(x+2)\(^2\)+96 ≥ 96 ∀ x
Vậy min A = 96 ⇔ x+2=0
⇔ x = -2
B1 có bạn làm rồi
B2, B=-2.(x\(^2\)-3x+2)
=-2.(x\(^2\)-2.\(\frac{3}{2}\)x+\(\frac{9}{4}\)+2-\(\frac{9}{4}\))
=-2.[(x-\(\frac{3}{2}\))\(^2\)-\(\frac{1}{4}\)]
=-2.(x-\(\frac{3}{2}\))\(^2\)+\(\frac{1}{2}\)
Có -2.(x-\(\frac{3}{2}\))\(^2\)≤0∀x
⇒-2.(x-\(\frac{3}{2}\))\(^2\)+\(\frac{1}{2}\)≤\(\frac{1}{2}\)∀x
Dấu = xảy ra⇔x=\(\frac{3}{2}\)
GTLN của B=\(\frac{1}{2}\)
Bài 1 :
Câu a : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)
Câu b : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy \(GTNN\) của \(A\) là \(\dfrac{11}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Bài 2 :
Câu a : \(x^2-6x+y^2-4y+13=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)
Do : \(\left(x-3\right)^2\ge0\) and \(\left(y-2\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy \(x=3\) and \(y=2\)
Câu b : \(4x^2-4x+y^2+6y+10=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y+3\right)^2=0\)
Because the : \(\left(2x-1\right)^2\ge0\) and \(\left(y+3\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{2}\) và \(y=-3\)