K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

7 tháng 7 2017

1,A=(x2-6x+9)+2

=(x-3)2+2

ta thấy (x-3)2>=0 với mọi x

=>(x-3)2+2>=2 với mọi x

hay A>=2

dấu "="xảy ra x-3=0<=>x=3

vậy MinA=2 khi x=3

ý b sai đầu bài bạn nhé

C=-(x2-5x)

=-(x2-5x+25/4)+25/4

=-(x-5/2)2+25/4

ta thấy -(x-5/2)2<=0 với mọi x

=>-(x-5/2)2+25/4 <=25/4 với mọi x

hay C<=25/4

dấu "=" xảy ra khi x-5/2=0<=>x=5/2

vậy MaxC=25/4 khi x=5/2

k mk nha

7 tháng 7 2017

Ta có : A = x2 - 6x + 11

<=> A = x2 - 6x + 9 + 2 

<=> A = (x - 3)2 + 2

Mà (x - 3)2 \(\ge0\forall x\)

Nên A =  (x - 3)2 + 2 \(\ge2\forall x\)

Vậy Amin = 2 , dấu "=" xảy ra khi và chỉ khi x = 3

1 tháng 7 2015

\(A=\left(4x^2-2.\frac{1}{2}2.x+\frac{1}{4}\right)+\frac{47}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{47}{4}\ge\frac{47}{4}\Rightarrow MinA=\frac{47}{4}\Leftrightarrow x=-\frac{1}{4}\)

30 tháng 10 2018

Bài 1 :

a) \(A=x^2-6x+11\)

\(A=x^2-2\cdot x\cdot3+3^2+2\)

\(A=\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

b) \(B=2x^2+10x-1\)

\(B=2\left(x^2+5x-\frac{1}{2}\right)\)

\(B=2\left[x^2+2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(B=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(B=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=\frac{-5}{2}\)

c) \(C=5x-x^2\)

\(C=-\left(x^2-5x\right)\)

\(C=-\left[x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right]\)

\(C=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)

\(C=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\le\frac{25}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Bài 2 :

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[x+\left(y+z\right)\right]^3-x^3-y^3-z^3\)

\(=x^3+3x^2\left(y+z\right)+3x\left(y+z\right)^2+\left(y+z\right)^3-x^3-y^3-z^3\)

\(=3x^2\left(y+z\right)+3x\left(y+z\right)^2+y^3+3y^2z+3yz^2+z^3-y^3-z^3\)

\(=3x^2\left(y+z\right)+3x\left(y+z\right)^2+3yz\left(y+z\right)\)

\(=3\left(y+z\right)\left[x^2+x\left(y+z\right)+yz\right]\)

\(=3\left(y+z\right)\left(x^2+xy+xz+yz\right)\)

\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=3\left(y+z\right)\left(x+y\right)\left(x+z\right)\)

30 tháng 10 2018

a) A=x2-6x+11

=(x2-6x+9)+2

=(x-3)2+2

Ta có  \(\left(x-3\right)^2\le0vớim\text{ọi}x\)

=>\(\left(x-3\right)^2+2\le2v\text{ới}m\text{ọi}x\)

Dấu "="xảy ra khi : x-3=0

=>x=3

Vậy x có GTNN là 2 tại x=3

8 tháng 5 2019

\(A=\frac{27-12x}{x^2+9}\)

\(A=\frac{x^2-12x+36-x^2-9}{x^2+9}\)

\(A=\frac{\left(x-36\right)^2-\left(x^2+9\right)}{x^2+9}\)

\(A=\frac{\left(x-36\right)^2}{x^2+9}-\frac{x^2+9}{x^2+9}\)

\(A=\frac{\left(x-36\right)^2}{x^2+9}-1\ge-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=36\)

3 tháng 1 2021

Vừa học xong :v 

\(A=\frac{4}{4x^2-4x+7}\)

Ta có : \(4x^2-4x+7=4x^2-4x+1+6\)

\(=\left(2x-1\right)^2+6\ge6\)Do đó : 

\(\frac{4}{\left(2x-1\right)^2+6}\le\frac{4}{6}=\frac{2}{3}\)

Dấu ''='' xảy ra : <=> \(x=\frac{1}{2}\)

Vậy GTLN A = 2/3 <=> x = 1/2

3 tháng 1 2021

Ta có : 4x2 - 4x + 7

= ( 4x2 - 4x + 1 ) + 6

= ( 2x - 1 )2 + 6 ≥ 6 ∀ x

hay 4x2 - 4x + 7 ≥ 6 ∀ x

=> \(\frac{1}{4x^2-4x+7}\le\frac{1}{6}\left(\forall x\right)\)

=> \(\frac{4}{4x^2-4x+7}\le\frac{4}{6}=\frac{2}{3}\left(\forall x\right)\)

Đẳng thức xảy ra khi x = 1/2

=> MaxA = 2/3 <=> x = 1/2

a. A=x2-3x+5=x2-1.5x-1.5x+2.25+2.75=x(x-1.5)-1.5(x-1.5)+2.75=(x-1.5)2+2.75

ta có (x-1.5)2 > hoặc = 0 với mọi x . Suy ra (x-1.5)2 +2.75 > hoặc = 2.75  với mọi x.

Dấu "=" xảy ra khi x-1.5=0 suy ra x=1.5

Vậy Amin=2.75 khi x=1.5