K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2022

A =      \(\overline{abc}\) + \(\overline{cba}\) 

A = 100a + 10b +c + 100c +  10b + a

A =   100( a +c) + (c+a) + 20b

A = (a+c) (100 +1) + 20b

A = 9.101 + 20b

A = 909 + 20b

Để A là một số có 3 chữ số thì A \(\le\) 999

\(\Leftrightarrow\) 909 + 20b \(\le\) 999

\(\Leftrightarrow\) 20b \(\le\) 90

\(\Leftrightarrow\)\(\le\) 9/2

\(\Leftrightarrow\) b \(\in\) { 0; 1; 2; 3; 4}

 

30 tháng 9 2023

loading...

29 tháng 7 2018

abc=125

nhớ k nha

1 tháng 11 2016

Ta có:

\(\overline{abc}=100a+10b+c=n^2-1\left(1\right)\)

\(\overline{cba}=100c+10b+a=\left(n-2\right)^2=n^2-4n+4\left(2\right)\)

Từ (1) và (2) suy ra:

\(99a-99c=4n-5\\ \Leftrightarrow99\left(a-c\right)=4n-5\)

Suy ra: \(4n-5⋮99\)

Ta có: \(100\le n^2-1\le999\)

\(\Leftrightarrow101\le n^2\le1000\)

\(\Leftrightarrow11\le n\le31\)

\(\Leftrightarrow44\le4n\le124\)

\(\Leftrightarrow39\le4n-5\le119\)

Suy ra: \(4n-5=99\)

Suy ra: \(n=26\)

Suy ra: \(\overline{abc}=26^2-1=675\)

 
8 tháng 7 2020

\(\overline{abc}-\overline{cba}=100.a+10.b+c-100.c-10.b-a=99.a-99.c=\)

\(=99\left(a-c\right)=495\Rightarrow a-c=5\)

=> a.c xảy ra các trường hợp sau 6.1=6; 7.2=14; 8.3=24; 9.4=36

Ta có \(b^2=a.c\) nên a.c phải là 1 số chính phương => a=9 và b=4

\(\overline{abc}=\left\{904;914;...;994\right\}\)

15 tháng 2 2018

992  hoặc 891

25 tháng 3 2020

Câu hỏi của Phương Còi - Toán lớp 6 - Học toán với OnlineMath

1 tháng 9 2017

abcabc = abc . 1000 + abc 

\(\Leftrightarrow\)abcabc = abc . (1000 + 1)

Suy ra : a. bcd . abc = abcabc

\(\Leftrightarrow\)a. bcd . abc = abc . 1001

\(\Leftrightarrow\)a . bcd  = 1001

Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 (vì từ 1 đến 9 chỉ có 7 chia hết cho 1001) từ đó suy ra bcd = 143 

Vậy : a = 7 ; b = 1 ; c = 4 ; d = 3

1 tháng 9 2017

a . abc . bcd = abcabc

a . abc . bcd = abc . 1001

=> a . bcd = 1001

     7 . 143 = 1001

=> a = 7 ; b = 1 ; c 4 ; d = 3

6 tháng 5 2018

Ta có:   \(\overline{abc}-\overline{cba}=495\)

         \(\Rightarrow100a+10b+c-100c-10b-a=495\)

          \(\Rightarrow99a-99c=495\)

          \(\Rightarrow99.\left(a-c\right)=495\Rightarrow a-c=5\Rightarrow a=5+c\)

Mà \(b^2=\overline{ac}\Rightarrow b^2=10a+c\)

=> \(b^2=10.\left(5+c\right)+c=50+11c\)

Vì \(\overline{ac}\) có 2 chữ số nên:

b^2 < 100

Mà b^2 > 50

=> b^2 thuộc 64,81

b^2 = 64 => 11c = 14 (vô lí)

b^2 = 81 => 11c = 31 (vô lí)

Vậy không có abc thỏa mãn

a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)

b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)

c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)