Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử có các số nguyên x,y,z sao cho \(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019^{2020}\)
\(\Leftrightarrow\left|x-y\right|+\left|y-z\right|+\left|z-x\right|+x-x+y-y+z-z=2019^{2020}\)
\(\Leftrightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x=2019^{2020}\)
Ta sẽ chứng minh: \(\left|a\right|+a\)luôn chẵn với mọi a
+) Nếu \(a\ge0\Rightarrow\left|a\right|=a\Rightarrow\left|a\right|+a=2a\left(Đ\right)\)
+) Nếu \(a< 0\Rightarrow\left|a\right|=-a\Rightarrow\left|a\right|+a=0\left(Đ\right)\)
Vậy \(\left|x-y\right|+x-y,\left|y-z\right|+y-z,\left|z-x\right|+z-x\)luôn chẵn
\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x\)luôn chẵn
Mà \(2019^{2020}\)lẻ nên điều quả sử là sai
Vậy không có x,y,z nguyên để \(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019^{2020}\)
Với \(x\ne y\ne z\ne0\).Ta có: Do VT luôn luôn là số lẻ mà VP luôn luôn là số chẵn(Vô Lý)
Với \(x=0\)\(\Rightarrow1+2019^y=2020^z\)
\(\Rightarrow y=1,z=1\)
Lần lượt thử các trường hợp voiứ y=0,z=0
Ta có:\(\left|n\right|+n=\left[{}\begin{matrix}2n\text{ với }n\ge0\\0\text{ với }n< 0\end{matrix}\right.\Rightarrow n⋮2\forall n\left(\circledast\right)\)
\(|x - y|+|y-z|+|z-t|+|t-\color{red}{x}|=2017\)
\(\Leftrightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-z\right|+t-z=2017\)
Từ \(\circledast\) ta có:
\(\left\{{}\begin{matrix}\left|x-y\right|+x-y⋮2\\\left|y-z\right|+y-z⋮2\\\left|z-t\right|+z-t⋮2\\\left|t-x\right|+t-x⋮2\end{matrix}\right.\)
\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-z\right|+t-z⋮2\)
Mà \(2017⋮̸2\) nên không tìm được \(x,y,z,t \in \mathbb{Z}\) thỏa mãn.