Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì :
|x - y| cùng tính chất chẵn lẻ với x - y
|y - z| cùng tính chất chẵn lẻ với y - z
|z - t| cùng tính chất chẵn lẻ với z - t
|t - x| cùng tính chất chẵn lẻ với t - x
=> |x - y| + |y - z| + |z - t| + |t - x| cùng tính chất chẵn lẻ với (x - y) + (y - z) + (z - t) + (t - x)
Mà (x - y) + (y - z) + (z - t) + (t - x) = (x - x) + (y - y) + (z - z) + (t - t) = 0 là số chẵn
=> |x - y| + |y - z| + |z - t| + |t - x| là số chẵn
Mà 2017 là số lẻ => |x - y| + |y - z| + |z - t| + |t - x| ≠ 2017
=> x ; y ; z ; t \(\in\phi\)
khi đó tổng này sẽ phụ thuộc vào hiệu 2 ẩn nào đó, tuỳ theo mỗi trường hợp
a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)
\(\Rightarrow3⋮a+1\)
\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)
b) Phần 1
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy+2y=0\)
\(\Rightarrow2x-4xy+2y-1=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Lập bảng xét Ư(-1)={1;-1}
Phần 2:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)
+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)
Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy P có giá trị nguyên
Vì :
| x - y | cùng tính chất chẵn lẻ với x - y
| y - z | cùng tính chất chẵn lẻ với y - z
| z - t | cùng tính chất chẵn lẻ với z - t
| t - x | cùng tính chất chẵn lẻ với t - x
\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) cùng chẵn lẻ với \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)\)
Mà \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)=\left(x-x\right)+\left(y-y\right)+\left(z-z\right)+\left(t-t\right)=0\)
là số chẵn
= > \(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\)là số chẵn
Mà 2017 là số lẻ \(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\ne2017\)
= > không có các số thỏa mãn
Từ gt của đề bài :
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{y+z+t}\text{=}\dfrac{y}{z+t+x}\text{=}\dfrac{z}{x+y+t}\text{=}\dfrac{t}{x+y+z}\text{=}\dfrac{x+y+z+t}{3.\left(x+y+z+t\right)}\left(\cdot\right)\)
Xét TH : \(x+y+z+t\text{=}0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z\text{=}-\left(x+t\right)\\z+t\text{=}-\left(x+y\right)\\x+t\text{=}-\left(y+z\right)\end{matrix}\right.\)
Do đó : \(P\text{=}-1+-1+-1+-1\)
\(P\text{=}-4\in Z\)
TH : \(x+y+z+t\ne0\)
\(\Rightarrow\left(\cdot\right)\text{=}\dfrac{1}{3}\)
Do đó : \(\dfrac{x}{y+z+t}\text{=}\dfrac{1}{3}\Rightarrow3x\text{=}y+z+t\)
\(\Rightarrow4x\text{=}x+y+z+t\)
\(CMTT:\left\{{}\begin{matrix}4y\text{=}x+y+z+t\\4z\text{=}x+y+z+t\\4t\text{=}x+y+z+t\end{matrix}\right.\)
Mà : \(\dfrac{x}{y+z+t}\text{=}\dfrac{y}{x+z+t}\text{=}\dfrac{z}{x+y+t}\text{=}\dfrac{t}{x+y+z}\)
\(\Rightarrow4x\text{=}4y\text{=}4z\text{=}4t\)
\(\Rightarrow x\text{=}y\text{=}z\text{=}t\)
Do đó : \(P\text{=}4\in Z\)
\(\Rightarrowđpcm\)
Kham khảo :
https://olm.vn/cau-hoi/cho-cac-so-thuc-xyzt-thoa-mandfracxyztdfracyztxdfracztxydfractxyz-cmr-p-dfracxyztdfracyztx.8377111224063.
Bạn vuốt xuống dưới để xem đáp án nha.
Ta có :
\(\left|x-y\right|\) có cùng tính chất chẵn lẻ với \(x-y\)
\(\left|y-z\right|\) có cùng tính chất chẵn lẻ với \(y-z\)
\(\left|z-t\right|\) có cùng tính chất chẵn lẻ với \(z-t\)
\(\left|t-x\right|\) có cùng tính chất chẵn lẻ với \(t-x\)
\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) có cùng tính chất chẵn lẻ với \(x-y+y-z+z-t+t-x=0\)
\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) luôn chẵn
Mà 2015 lẻ \(\Rightarrow\) không có số nguyên x ; y ; z ; t nào thỏa mãn đề bài
Ta có:\(\left|n\right|+n=\left[{}\begin{matrix}2n\text{ với }n\ge0\\0\text{ với }n< 0\end{matrix}\right.\Rightarrow n⋮2\forall n\left(\circledast\right)\)
\(|x - y|+|y-z|+|z-t|+|t-\color{red}{x}|=2017\)
\(\Leftrightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-z\right|+t-z=2017\)
Từ \(\circledast\) ta có:
\(\left\{{}\begin{matrix}\left|x-y\right|+x-y⋮2\\\left|y-z\right|+y-z⋮2\\\left|z-t\right|+z-t⋮2\\\left|t-x\right|+t-x⋮2\end{matrix}\right.\)
\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-z\right|+t-z⋮2\)
Mà \(2017⋮̸2\) nên không tìm được \(x,y,z,t \in \mathbb{Z}\) thỏa mãn.